logo

Lielākais k izmēra apakšplūsmas reizinājums

Izmēģiniet to GfG Practice ' title= #practiceLinkDiv { display: none !important; }

Dots masīvs, kas sastāv no n pozitīviem veseliem skaitļiem un vesela skaitļa k. Atrodiet lielāko produktu apakšgrupu ar izmēru k, t.i., atrodiet maksimālo k blakus esošo elementu produkciju masīvā, kur k<= n.
Piemēri:  

    Input:    arr[] = {1 5 9 8 2 4  
1 8 1 2}
k = 6
Output: 4608
The subarray is {9 8 2 4 1 8}
Input: arr[] = {1 5 9 8 2 4 1 8 1 2}
k = 4
Output: 720
The subarray is {5 9 8 2}
Input: arr[] = {2 5 8 1 1 3};
k = 3
Output: 80
The subarray is {2 5 8}
Recommended Practice Lielākais produkts Izmēģiniet to!

Brutālā spēka pieeja:



Mēs atkārtojam visus k izmēra apakšblokus, izmantojot divas ligzdotas cilpas. Ārējā cilpa iet no 0 līdz n-k un iekšējā cilpa no i līdz i+k-1. Mēs aprēķinām katra apakšmasīva reizinājumu un atjauninām līdz šim atrasto maksimālo produktu. Visbeidzot mēs atgriežam maksimālo produktu.

Tālāk ir norādītas iepriekš minētās pieejas darbības.

  1. Inicializējiet mainīgo maxProduct uz INT_MIN, kas apzīmē mazāko iespējamo veselo skaitli.
  2. Atkārtojiet visus k izmēra apakšblokus, izmantojot divas ligzdotas cilpas.
  3. Ārējā cilpa iet no 0 līdz n-k.
  4. Iekšējā cilpa iet no i līdz i+k-1, kur i ir apakšgrupas sākuma indekss.
  5. Aprēķiniet pašreizējā apakšgrupas reizinājumu, izmantojot iekšējo cilpu.
  6. Ja produkts ir lielāks par maxProduct, atjauniniet maxProduct uz pašreizējo produktu.
  7. Atgrieziet maxProduct kā rezultātu.

Tālāk ir norādīts iepriekš minētās pieejas kods:



C++
// C++ program to find the maximum product of a subarray // of size k. #include    using namespace std; // This function returns maximum product of a subarray // of size k in given array arr[0..n-1]. This function // assumes that k is smaller than or equal to n. int findMaxProduct(int arr[] int n int k) {  int maxProduct = INT_MIN;  for (int i = 0; i <= n - k; i++) {  int product = 1;  for (int j = i; j < i + k; j++) {  product *= arr[j];  }  maxProduct = max(maxProduct product);  }  return maxProduct; } // Driver code int main() {  int arr1[] = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = sizeof(arr1)/sizeof(arr1[0]);  cout << findMaxProduct(arr1 n k) << endl;  k = 4;  cout << findMaxProduct(arr1 n k) << endl;  int arr2[] = {2 5 8 1 1 3};  k = 3;  n = sizeof(arr2)/sizeof(arr2[0]);  cout << findMaxProduct(arr2 n k);  return 0; } 
Java
import java.util.Arrays; public class Main {  // This function returns the maximum product of a subarray of size k in the given array  // It assumes that k is smaller than or equal to the length of the array.  static int findMaxProduct(int[] arr int n int k) {  int maxProduct = Integer.MIN_VALUE;  for (int i = 0; i <= n - k; i++) {  int product = 1;  for (int j = i; j < i + k; j++) {  product *= arr[j];  }  maxProduct = Math.max(maxProduct product);  }  return maxProduct;  }  // Driver code  public static void main(String[] args) {  int[] arr1 = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = arr1.length;  System.out.println(findMaxProduct(arr1 n k));  k = 4;  System.out.println(findMaxProduct(arr1 n k));  int[] arr2 = {2 5 8 1 1 3};  k = 3;  n = arr2.length;  System.out.println(findMaxProduct(arr2 n k));  } } 
Python3
# Python Code def find_max_product(arr k): max_product = float('-inf') # Initialize max_product to negative infinity n = len(arr) # Get the length of the input array # Iterate through the array with a window of size k for i in range(n - k + 1): product = 1 # Initialize product to 1 for each subarray for j in range(i i + k): product *= arr[j] # Calculate the product of the subarray max_product = max(max_product product) # Update max_product if necessary return max_product # Return the maximum product of a subarray of size k # Driver code if __name__ == '__main__': arr1 = [1 5 9 8 2 4 1 8 1 2] k = 6 print(find_max_product(arr1 k)) # Output 25920 k = 4 print(find_max_product(arr1 k)) # Output 1728 arr2 = [2 5 8 1 1 3] k = 3 print(find_max_product(arr2 k)) # Output 80 # This code is contributed by guptapratik 
C#
using System; public class GFG {  // This function returns the maximum product of a subarray of size k in the given array  // It assumes that k is smaller than or equal to the length of the array.  static int FindMaxProduct(int[] arr int n int k)  {  int maxProduct = int.MinValue;  for (int i = 0; i <= n - k; i++)  {  int product = 1;  for (int j = i; j < i + k; j++)  {  product *= arr[j];  }  maxProduct = Math.Max(maxProduct product);  }  return maxProduct;  }  // Driver code  public static void Main(string[] args)  {  int[] arr1 = { 1 5 9 8 2 4 1 8 1 2 };  int k = 6;  int n = arr1.Length;  Console.WriteLine(FindMaxProduct(arr1 n k));  k = 4;  Console.WriteLine(FindMaxProduct(arr1 n k));  int[] arr2 = { 2 5 8 1 1 3 };  k = 3;  n = arr2.Length;  Console.WriteLine(FindMaxProduct(arr2 n k));  } } 
JavaScript
// This function returns the maximum product of a subarray of size k in the given array // It assumes that k is smaller than or equal to the length of the array. function findMaxProduct(arr k) {  let maxProduct = Number.MIN_VALUE;  const n = arr.length;  for (let i = 0; i <= n - k; i++) {  let product = 1;  for (let j = i; j < i + k; j++) {  product *= arr[j];  }  maxProduct = Math.max(maxProduct product);  }  return maxProduct; } // Driver code const arr1 = [1 5 9 8 2 4 1 8 1 2]; let k = 6; console.log(findMaxProduct(arr1 k)); k = 4; console.log(findMaxProduct(arr1 k)); const arr2 = [2 5 8 1 1 3]; k = 3; console.log(findMaxProduct(arr2 k)); 

Izvade
4608 720 80

Laika sarežģītība: O(n*k) kur n ir ievades masīva garums un k ir apakšmasīva izmērs, kuram mēs atrodam maksimālo reizinājumu.
Palīgtelpa: O(1), jo mēs izmantojam tikai nemainīgu papildu vietas daudzumu, lai saglabātu maksimālo reizinājumu un pašreizējā apakšgrupas reizinājumu.

2. metode (efektīva: O(n))  
Mēs to varam atrisināt O(n), izmantojot faktu, ka k izmēra apakšgrupas reizinājumu var aprēķināt O(1) laikā, ja mums ir pieejams iepriekšējā apakšgrupas reizinājums. 
 

curr_product = (prev_product / arr[i-1]) * arr[i + k -1]  
prev_product : Product of subarray of size k beginning
with arr[i-1]
curr_product : Product of subarray of size k beginning
with arr[i]


Tādā veidā mēs varam aprēķināt maksimālo k izmēra apakšgrupas produktu tikai vienā šķērsošanā. Zemāk ir C++ idejas realizācija.



C++
// C++ program to find the maximum product of a subarray // of size k. #include    using namespace std; // This function returns maximum product of a subarray // of size k in given array arr[0..n-1]. This function // assumes that k is smaller than or equal to n. int findMaxProduct(int arr[] int n int k) {  // Initialize the MaxProduct to 1 as all elements  // in the array are positive  int MaxProduct = 1;  for (int i=0; i<k; i++)  MaxProduct *= arr[i];  int prev_product = MaxProduct;  // Consider every product beginning with arr[i]  // where i varies from 1 to n-k-1  for (int i=1; i<=n-k; i++)  {  int curr_product = (prev_product/arr[i-1]) *  arr[i+k-1];  MaxProduct = max(MaxProduct curr_product);  prev_product = curr_product;  }  // Return the maximum product found  return MaxProduct; } // Driver code int main() {  int arr1[] = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = sizeof(arr1)/sizeof(arr1[0]);  cout << findMaxProduct(arr1 n k) << endl;  k = 4;  cout << findMaxProduct(arr1 n k) << endl;  int arr2[] = {2 5 8 1 1 3};  k = 3;  n = sizeof(arr2)/sizeof(arr2[0]);  cout << findMaxProduct(arr2 n k);  return 0; } 
Java
// Java program to find the maximum product of a subarray // of size k import java.io.*; import java.util.*; class GFG  {  // Function returns maximum product of a subarray  // of size k in given array arr[0..n-1]. This function  // assumes that k is smaller than or equal to n.  static int findMaxProduct(int arr[] int n int k)  {  // Initialize the MaxProduct to 1 as all elements  // in the array are positive  int MaxProduct = 1;  for (int i=0; i<k; i++)  MaxProduct *= arr[i];    int prev_product = MaxProduct;    // Consider every product beginning with arr[i]  // where i varies from 1 to n-k-1  for (int i=1; i<=n-k; i++)  {  int curr_product = (prev_product/arr[i-1]) *  arr[i+k-1];  MaxProduct = Math.max(MaxProduct curr_product);  prev_product = curr_product;  }    // Return the maximum product found  return MaxProduct;  }    // driver program  public static void main (String[] args)   {  int arr1[] = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = arr1.length;  System.out.println(findMaxProduct(arr1 n k));    k = 4;  System.out.println(findMaxProduct(arr1 n k));    int arr2[] = {2 5 8 1 1 3};  k = 3;  n = arr2.length;  System.out.println(findMaxProduct(arr2 n k));  } } // This code is contributed by Pramod Kumar 
Python3
# Python 3 program to find the maximum  # product of a subarray of size k. # This function returns maximum product  # of a subarray of size k in given array # arr[0..n-1]. This function assumes  # that k is smaller than or equal to n. def findMaxProduct(arr n k) : # Initialize the MaxProduct to 1  # as all elements in the array  # are positive MaxProduct = 1 for i in range(0 k) : MaxProduct = MaxProduct * arr[i] prev_product = MaxProduct # Consider every product beginning # with arr[i] where i varies from # 1 to n-k-1 for i in range(1 n - k + 1) : curr_product = (prev_product // arr[i-1]) * arr[i+k-1] MaxProduct = max(MaxProduct curr_product) prev_product = curr_product # Return the maximum product found return MaxProduct # Driver code arr1 = [1 5 9 8 2 4 1 8 1 2] k = 6 n = len(arr1) print (findMaxProduct(arr1 n k) ) k = 4 print (findMaxProduct(arr1 n k)) arr2 = [2 5 8 1 1 3] k = 3 n = len(arr2) print(findMaxProduct(arr2 n k)) # This code is contributed by Nikita Tiwari. 
C#
// C# program to find the maximum  // product of a subarray of size k using System; class GFG  {  // Function returns maximum   // product of a subarray of   // size k in given array   // arr[0..n-1]. This function   // assumes that k is smaller   // than or equal to n.  static int findMaxProduct(int []arr   int n int k)  {  // Initialize the MaxProduct   // to 1 as all elements  // in the array are positive  int MaxProduct = 1;  for (int i = 0; i < k; i++)  MaxProduct *= arr[i];  int prev_product = MaxProduct;  // Consider every product beginning   // with arr[i] where i varies from   // 1 to n-k-1  for (int i = 1; i <= n - k; i++)  {  int curr_product = (prev_product /   arr[i - 1]) *   arr[i + k - 1];  MaxProduct = Math.Max(MaxProduct   curr_product);  prev_product = curr_product;  }  // Return the maximum  // product found  return MaxProduct;  }    // Driver Code  public static void Main ()   {  int []arr1 = {1 5 9 8 2   4 1 8 1 2};  int k = 6;  int n = arr1.Length;  Console.WriteLine(findMaxProduct(arr1 n k));  k = 4;  Console.WriteLine(findMaxProduct(arr1 n k));  int []arr2 = {2 5 8 1 1 3};  k = 3;  n = arr2.Length;  Console.WriteLine(findMaxProduct(arr2 n k));  } } // This code is contributed by anuj_67. 
JavaScript
<script>  // JavaScript program to find the maximum   // product of a subarray of size k    // Function returns maximum   // product of a subarray of   // size k in given array   // arr[0..n-1]. This function   // assumes that k is smaller   // than or equal to n.  function findMaxProduct(arr n k)  {  // Initialize the MaxProduct   // to 1 as all elements  // in the array are positive  let MaxProduct = 1;  for (let i = 0; i < k; i++)  MaxProduct *= arr[i];    let prev_product = MaxProduct;    // Consider every product beginning   // with arr[i] where i varies from   // 1 to n-k-1  for (let i = 1; i <= n - k; i++)  {  let curr_product =   (prev_product / arr[i - 1]) * arr[i + k - 1];  MaxProduct = Math.max(MaxProduct curr_product);  prev_product = curr_product;  }    // Return the maximum  // product found  return MaxProduct;  }    let arr1 = [1 5 9 8 2 4 1 8 1 2];  let k = 6;  let n = arr1.length;  document.write(findMaxProduct(arr1 n k) + '
'
); k = 4; document.write(findMaxProduct(arr1 n k) + '
'
); let arr2 = [2 5 8 1 1 3]; k = 3; n = arr2.length; document.write(findMaxProduct(arr2 n k) + '
'
); </script>
PHP
 // PHP program to find the maximum  // product of a subarray of size k. // This function returns maximum  // product of a subarray of size  // k in given array arr[0..n-1]. // This function assumes that k  // is smaller than or equal to n. function findMaxProduct( $arr $n $k) { // Initialize the MaxProduct to // 1 as all elements // in the array are positive $MaxProduct = 1; for($i = 0; $i < $k; $i++) $MaxProduct *= $arr[$i]; $prev_product = $MaxProduct; // Consider every product // beginning with arr[i] // where i varies from 1  // to n-k-1 for($i = 1; $i < $n - $k; $i++) { $curr_product = ($prev_product / $arr[$i - 1]) * $arr[$i + $k - 1]; $MaxProduct = max($MaxProduct $curr_product); $prev_product = $curr_product; } // Return the maximum // product found return $MaxProduct; } // Driver code $arr1 = array(1 5 9 8 2 4 1 8 1 2); $k = 6; $n = count($arr1); echo findMaxProduct($arr1 $n $k)'n' ; $k = 4; echo findMaxProduct($arr1 $n $k)'n'; $arr2 = array(2 5 8 1 1 3); $k = 3; $n = count($arr2); echo findMaxProduct($arr2 $n $k); // This code is contributed by anuj_67. ?> 

Izvade
4608 720 80

Palīgtelpa: O(1) jo netiek izmantota papildu vieta.
Šī raksta autors ir Ašūts Kumars .