logo

K'th Boom numurs

Izmēģiniet to GfG Practice ' title= #practiceLinkDiv { display: none !important; }

Izlices skaitļi ir skaitļi, kas sastāv tikai no cipariem 2 un 3. Dots vesels skaitlis k (0 Piemēri: 

Input : k = 2 Output: 3 Input : k = 3 Output: 22 Input : k = 100 Output: 322323 Input: k = 1000000 Output: 3332322223223222223
Recommended Practice Kth izlices numurs Izmēģiniet to!

Ideja ir ļoti vienkārša, piemēram Bināro skaitļu ģenerēšana . Arī šeit mēs izmantojam to pašu pieeju  



mēs izmantojam rindas datu struktūru, lai atrisinātu šo problēmu. Pirmā rinda “2”, pēc tam “3”, šie divi ir attiecīgi pirmais un otrais izlices numurs. Tagad iestatiet skaitu = 2 katrai rindas priekšpusei, kad parādās pop() Izlices numurs citādi pievienojiet "3" uznirstošajam skaitlim un pieauguma skaitam++, ja (skaits==k), tad drukājiet pašreizējo Izlices numurs . Atkārtojiet procesu, līdz sasniedzam K'th Izlices numurs .

Šo pieeju var uzskatīt par BFS kokam, kura sakne ir tukša virkne. Katra mezgla kreisajam bērnam ir pievienoti 2, bet labajam bērnam ir pievienoti 3. 

Zemāk ir šīs idejas īstenošana. 



C++
// C++ program to find K'th Boom number #include   using namespace std; typedef long long int ll; // This function uses queue data structure to K'th // Boom number void boomNumber(ll k) {  // Create an empty queue of strings  queue<string> q;  // Enqueue an empty string  q.push('');  // counter for K'th element  ll count = 0;  // This loop checks the value of count to  // become equal to K when value of count  // will be equals to k we will print the  // Boom number  while (count <= k)  {  // current Boom number  string s1 = q.front();  // pop front  q.pop();  // Store current Boom number before changing it  string s2 = s1;  // Append '2' to string s1 and enqueue it  q.push(s1.append('2'));  count++;  // check if count==k  if (count==k)  {  cout << s1 << endl; // K'th Boom number  break;  }  // Append '3' to string s2 and enqueue it.  // Note that s2 contains the previous front  q.push(s2.append('3'));  count++;  // check if count==k  if (count==k)  {  cout << s2 << endl; // K'th Boom number  break;  }  }  return ; } // Driver program to test above function int main() {  ll k = 1000000;  boomNumber(k);  return 0; } 
Java
/*package whatever //do not write package name here */  import java.io.*; import java.util.*; class GFG  {  // This function uses queue data structure to K'th  // Boom number  static void boomNumber(long k)  {  // Create an empty queue of strings  Queue<String> q = new LinkedList<String>();  // Enqueue an empty string  q.add('');  // counter for K'th element  long count = 0;  // This loop checks the value of count to  // become equal to K when value of count  // will be equals to k we will print the  // Boom number  while (count <= k)  {  // current Boom number  String s1 = q.poll();  // Store current Boom number before changing it  String s2 = s1;  // Append '2' to string s1 and enqueue it  q.add(s1+'2');  count++;  // check if count==k  if (count==k)  {  System.out.println(s1); // K'th Boom number  break;  }  // Append '3' to string s2 and enqueue it.  // Note that s2 contains the previous front  q.add(s2+'3');  count++;  // check if count==k  if (count==k)  {  System.out.println(s2); // K'th Boom number  break;  }  }  return ;  }  // Driver code  public static void main(String args[])  {  long k = 1000000;  boomNumber(k);  } } // This code is contributed by shinjanpatra 
Python3
# Python3 program to find K'th Boom number # This function uses queue data structure to K'th # Boom number def boomNumber(k): # Create an empty queue of strings q = [] # Enqueue an empty string q.append('') # counter for K'th element count = 0 # This loop checks the value of count to # become equal to K when value of count # will be equals to k we will print the # Boom number while (count <= k): # current Boom number s1 = q[0] # pop front q = q[1:] # Store current Boom number before changing it s2 = s1 # Append '2' to string s1 and enqueue it s1 += '2' q.append(s1) count = count + 1 # check if count==k if (count==k): print(s1) # K'th Boom number break # Append '3' to string s2 and enqueue it. # Note that s2 contains the previous front s2 += '3' q.append(s2) count = count + 1 # check if count==k if (count==k): print(s2) # K'th Boom number break return # Driver program to test above function k = 1000000 boomNumber(k) # This code is contributed by shinjanpatra 
C#
// C# program to find K'th Boom number using System; using System.Collections;  class GFG{ // This function uses queue data structure // to K'th Boom number static void boomNumber(long k) {    // Create an empty queue of strings  Queue q = new Queue();     // Enqueue an empty string  q.Enqueue('');    // counter for K'th element  long count = 0;    // This loop checks the value of count to  // become equal to K when value of count  // will be equals to k we will print the  // Boom number  while (count <= k)  {    // current Boom number  string s1 = (string)q.Dequeue();    // Store current Boom number  // before changing it  string s2 = s1;    // Append '2' to string s1 and  // enqueue it  s1 += '2';  q.Enqueue(s1);  count++;    // Check if count==k  if (count == k)  {    // K'th Boom number  Console.Write(s1);   break;  }    // Append '3' to string s2 and enqueue it.  // Note that s2 contains the previous front  s2 += '3';  q.Enqueue(s2);  count++;    // Check if count==k  if (count == k)  {    // K'th Boom number  Console.Write(s2);   break;  }  }  return; }  // Driver code  public static void Main(string []arg)  {  long k = 1000000;    boomNumber(k); } } // This code is contributed by rutvik_56 
JavaScript
<script> // JavaScript program to find K'th Boom number // This function uses queue data structure to K'th // Boom number function boomNumber(k){  // Create an empty queue of strings  let q = []  // Enqueue an empty string  q.push('')  // counter for K'th element  let count = 0  // This loop checks the value of count to  // become equal to K when value of count  // will be equals to k we will print the  // Boom number  while (count <= k){    // current Boom number  let s1 = q.shift()  // Store current Boom number before changing it  let s2 = s1  // Append '2' to string s1 and enqueue it  s1 += '2'  q.push(s1)  count = count + 1  // check if count==k  if (count==k){  document.write(s1'
'
) // K'th Boom number break } // Append '3' to string s2 and enqueue it. // Note that s2 contains the previous front s2 += '3' q.push(s2) count = count + 1 // check if count==k if (count==k){ document.write(s2'
'
) // K'th Boom number break } } return } // Driver program to test above function let k = 1000000 boomNumber(k) // This code is contributed by shinjanpatra </script>

Izvade
3332322223223222223

Laika sarežģītība: O(K)
Palīgtelpa: O(n)

Šo rakstu ir pārskatījusi komanda GeeksforGeeks.