logo

Pakāpju cipari

Izmēģiniet to GfG Practice ' title= #practiceLinkDiv { display: none !important; }

Doti divi veseli skaitļi 'n' un 'm', atrodiet visus soļu skaitļus diapazonā [n m]. Tiek izsaukts numurs soļa numurs ja visiem blakus esošajiem cipariem ir absolūtā atšķirība 1. 321 ir soļu skaitlis, bet 421 nav.

Piemēri: 



  Input :   n = 0 m = 21   Output :   0 1 2 3 4 5 6 7 8 9 10 12 21   Input :   n = 10 m = 15   Output :   10 12
Recommended Practice Skaitļi ar vienu absolūtu atšķirību Izmēģiniet to!

1. metode: Brutālā spēka pieeja
Šajā metodē tiek izmantota brutālā spēka pieeja, lai iterētu visus veselos skaitļus no n līdz m un pārbaudītu, vai tas ir pakāpju skaitlis. 

C++
// A C++ program to find all the Stepping Number in [n m] #include   using namespace std; // This function checks if an integer n is a Stepping Number bool isStepNum(int n) {  // Initialize prevDigit with -1  int prevDigit = -1;  // Iterate through all digits of n and compare difference  // between value of previous and current digits  while (n)  {  // Get Current digit  int curDigit = n % 10;  // Single digit is consider as a  // Stepping Number  if (prevDigit == -1)  prevDigit = curDigit;  else  {  // Check if absolute difference between  // prev digit and current digit is 1  if (abs(prevDigit - curDigit) != 1)  return false;  }  prevDigit = curDigit;  n /= 10;  }  return true; } // A brute force approach based function to find all // stepping numbers. void displaySteppingNumbers(int n int m) {  // Iterate through all the numbers from [NM]  // and check if it’s a stepping number.  for (int i=n; i<=m; i++)  if (isStepNum(i))  cout << i << ' '; } // Driver program to test above function int main() {  int n = 0 m = 21;  // Display Stepping Numbers in  // the range [n m]  displaySteppingNumbers(n m);  return 0; } 
Java
// A Java program to find all the Stepping Number in [n m] class Main {  // This Method checks if an integer n  // is a Stepping Number  public static boolean isStepNum(int n)  {  // Initialize prevDigit with -1  int prevDigit = -1;  // Iterate through all digits of n and compare  // difference between value of previous and  // current digits  while (n > 0)  {  // Get Current digit  int curDigit = n % 10;  // Single digit is consider as a  // Stepping Number  if (prevDigit != -1)  {  // Check if absolute difference between  // prev digit and current digit is 1  if (Math.abs(curDigit-prevDigit) != 1)  return false;  }  n /= 10;  prevDigit = curDigit;  }  return true;  }  // A brute force approach based function to find all  // stepping numbers.  public static void displaySteppingNumbers(int nint m)  {  // Iterate through all the numbers from [NM]  // and check if it is a stepping number.  for (int i = n; i <= m; i++)  if (isStepNum(i))  System.out.print(i+ ' ');  }  // Driver code  public static void main(String args[])  {  int n = 0 m = 21;  // Display Stepping Numbers in the range [nm]  displaySteppingNumbers(nm);  } } 
Python3
# A Python3 program to find all the Stepping Number in [n m] # This function checks if an integer n is a Stepping Number def isStepNum(n): # Initialize prevDigit with -1 prevDigit = -1 # Iterate through all digits of n and compare difference # between value of previous and current digits while (n): # Get Current digit curDigit = n % 10 # Single digit is consider as a # Stepping Number if (prevDigit == -1): prevDigit = curDigit else: # Check if absolute difference between # prev digit and current digit is 1 if (abs(prevDigit - curDigit) != 1): return False prevDigit = curDigit n //= 10 return True # A brute force approach based function to find all # stepping numbers. def displaySteppingNumbers(n m): # Iterate through all the numbers from [NM] # and check if it’s a stepping number. for i in range(n m + 1): if (isStepNum(i)): print(i end = ' ') # Driver code if __name__ == '__main__': n m = 0 21 # Display Stepping Numbers in # the range [n m] displaySteppingNumbers(n m) # This code is contributed by mohit kumar 29 
C#
// A C# program to find all  // the Stepping Number in [n m] using System; class GFG {  // This Method checks if an   // integer n is a Stepping Number  public static bool isStepNum(int n)  {  // Initialize prevDigit with -1  int prevDigit = -1;  // Iterate through all digits   // of n and compare difference   // between value of previous   // and current digits  while (n > 0)  {  // Get Current digit  int curDigit = n % 10;  // Single digit is considered   // as a Stepping Number  if (prevDigit != -1)  {  // Check if absolute difference   // between prev digit and current   // digit is 1  if (Math.Abs(curDigit -   prevDigit) != 1)  return false;  }  n /= 10;  prevDigit = curDigit;  }  return true;  }  // A brute force approach based   // function to find all stepping numbers.  public static void displaySteppingNumbers(int n   int m)  {  // Iterate through all the numbers   // from [NM] and check if it is   // a stepping number.  for (int i = n; i <= m; i++)  if (isStepNum(i))  Console.Write(i+ ' ');  }  // Driver code  public static void Main()  {  int n = 0 m = 21;  // Display Stepping Numbers   // in the range [nm]  displaySteppingNumbers(n m);  } } // This code is contributed by nitin mittal. 
JavaScript
<script>  // A Javascript program to find all the Stepping Number in [n m]    // This function checks if an integer n is a Stepping Number  function isStepNum(n)  {  // Initialize prevDigit with -1  let prevDigit = -1;  // Iterate through all digits of n and compare difference  // between value of previous and current digits  while (n > 0)  {  // Get Current digit  let curDigit = n % 10;  // Single digit is consider as a  // Stepping Number  if (prevDigit == -1)  prevDigit = curDigit;  else  {  // Check if absolute difference between  // prev digit and current digit is 1  if (Math.abs(prevDigit - curDigit) != 1)  return false;  }  prevDigit = curDigit;  n = parseInt(n / 10 10);  }  return true;  }  // A brute force approach based function to find all  // stepping numbers.  function displaySteppingNumbers(n m)  {  // Iterate through all the numbers from [NM]  // and check if it’s a stepping number.  for (let i = n; i <= m; i++)  if (isStepNum(i))  document.write(i + ' ');  }  let n = 0 m = 21;    // Display Stepping Numbers in  // the range [n m]  displaySteppingNumbers(n m);    // This code is contributed by mukesh07. </script> 

Izvade
0 1 2 3 4 5 6 7 8 9 10 12 21 

2. metode: BFS/DFS izmantošana

Ideja ir izmantot a Platuma pirmā meklēšana / Pirmā dziļuma meklēšana šķērsošana.



Kā izveidot grafiku?  
Katrs diagrammas mezgls apzīmē pakāpju skaitli; būs virzīta mala no mezgla U uz V, ja V var pārveidot no U. (U un V ir soļu skaitļi) Pakāpienu skaitli V var pārveidot no U šādā veidā.
pēdējais cipars attiecas uz U pēdējo ciparu (t.i., U % 10) 
Blakus esošais numurs V var būt:  

  • U*10 + pēdējais cipars + 1 (kaimiņš A)
  • U*10 + pēdējais cipars — 1 (kaimiņš B)


Izmantojot iepriekš minētās darbības, U tiek pievienots jauns cipars, kas ir vai nu pēdējais cipars-1, vai pēdējais cipars+1, lai jaunais skaitlis V, kas izveidots no U, būtu arī soļu skaitlis. 
Tāpēc katram mezglam būs ne vairāk kā 2 blakus esošie mezgli.
Edge korpusi: Kad U pēdējais cipars ir vai 9

    1. gadījums:lastDigit ir 0 : šajā gadījumā var pievienot tikai ciparu “1”.2. gadījums:pēdējais cipars ir 9 : šajā gadījumā var pievienot tikai ciparu "8".

Kas būs avota/sākuma mezgls?   



  • Katrs atsevišķs cipars tiek uzskatīts par pakāpju skaitli, tāpēc bfs traveral katram ciparam dos visus soļu skaitļus, sākot no šī cipara.
  • Veiciet bfs/dfs šķērsošanu visiem skaitļiem no [09].

Piezīme: Mezglam 0 nav nepieciešams izpētīt kaimiņus BFS šķērsošanas laikā, jo tas novedīs pie 01 012 010, un tos attieksies BFS šķērsošana, sākot no 1. mezgla. 
Piemērs, lai atrastu visus soļu skaitļus no 0 līdz 21   

-> 0 is a stepping Number and it is in the range so display it. -> 1 is a Stepping Number find neighbors of 1 i.e. 10 and 12 and push them into the queue   How to get 10 and 12?   Here U is 1 and last Digit is also 1 V = 10 + 0 = 10 ( Adding lastDigit - 1 ) V = 10 + 2 = 12 ( Adding lastDigit + 1 ) Then do the same for 10 and 12 this will result into 101 123 121 but these Numbers are out of range. Now any number transformed from 10 and 12 will result into a number greater than 21 so no need to explore their neighbors. -> 2 is a Stepping Number find neighbors of 2 i.e. 21 23. -> 23 is out of range so it is not considered as a Stepping Number (Or a neighbor of 2) The other stepping numbers will be 3 4 5 6 7 8 9.

BFS balstīts risinājums:

C++
// A C++ program to find all the Stepping Number from N=n // to m using BFS Approach #include   using namespace std; // Prints all stepping numbers reachable from num // and in range [n m] void bfs(int n int m int num) {  // Queue will contain all the stepping Numbers  queue<int> q;  q.push(num);  while (!q.empty())  {  // Get the front element and pop from the queue  int stepNum = q.front();  q.pop();  // If the Stepping Number is in the range  // [n m] then display  if (stepNum <= m && stepNum >= n)  cout << stepNum << ' ';  // If Stepping Number is 0 or greater than m  // no need to explore the neighbors  if (num == 0 || stepNum > m)  continue;  // Get the last digit of the currently visited  // Stepping Number  int lastDigit = stepNum % 10;  // There can be 2 cases either digit to be  // appended is lastDigit + 1 or lastDigit - 1  int stepNumA = stepNum * 10 + (lastDigit- 1);  int stepNumB = stepNum * 10 + (lastDigit + 1);  // If lastDigit is 0 then only possible digit  // after 0 can be 1 for a Stepping Number  if (lastDigit == 0)  q.push(stepNumB);  //If lastDigit is 9 then only possible  //digit after 9 can be 8 for a Stepping  //Number  else if (lastDigit == 9)  q.push(stepNumA);  else  {  q.push(stepNumA);  q.push(stepNumB);  }  } } // Prints all stepping numbers in range [n m] // using BFS. void displaySteppingNumbers(int n int m) {  // For every single digit Number 'i'  // find all the Stepping Numbers  // starting with i  for (int i = 0 ; i <= 9 ; i++)  bfs(n m i); } //Driver program to test above function int main() {  int n = 0 m = 21;  // Display Stepping Numbers in the  // range [nm]  displaySteppingNumbers(nm);  return 0; } 
Java
// A Java program to find all the Stepping Number in // range [n m] import java.util.*; class Main {  // Prints all stepping numbers reachable from num  // and in range [n m]  public static void bfs(int nint mint num)  {  // Queue will contain all the stepping Numbers  Queue<Integer> q = new LinkedList<Integer> ();  q.add(num);  while (!q.isEmpty())  {  // Get the front element and pop from  // the queue  int stepNum = q.poll();  // If the Stepping Number is in  // the range [nm] then display  if (stepNum <= m && stepNum >= n)  {  System.out.print(stepNum + ' ');  }  // If Stepping Number is 0 or greater  // then m no need to explore the neighbors  if (stepNum == 0 || stepNum > m)  continue;  // Get the last digit of the currently  // visited Stepping Number  int lastDigit = stepNum % 10;  // There can be 2 cases either digit  // to be appended is lastDigit + 1 or  // lastDigit - 1  int stepNumA = stepNum * 10 + (lastDigit- 1);  int stepNumB = stepNum * 10 + (lastDigit + 1);  // If lastDigit is 0 then only possible  // digit after 0 can be 1 for a Stepping  // Number  if (lastDigit == 0)  q.add(stepNumB);  // If lastDigit is 9 then only possible  // digit after 9 can be 8 for a Stepping  // Number  else if (lastDigit == 9)  q.add(stepNumA);  else  {  q.add(stepNumA);  q.add(stepNumB);  }  }  }  // Prints all stepping numbers in range [n m]  // using BFS.  public static void displaySteppingNumbers(int nint m)  {  // For every single digit Number 'i'  // find all the Stepping Numbers  // starting with i  for (int i = 0 ; i <= 9 ; i++)  bfs(n m i);  }  //Driver code  public static void main(String args[])  {  int n = 0 m = 21;  // Display Stepping Numbers in  // the range [nm]  displaySteppingNumbers(nm);  } } 
Python3
# A Python3 program to find all the Stepping Number from N=n # to m using BFS Approach # Prints all stepping numbers reachable from num # and in range [n m] def bfs(n m num) : # Queue will contain all the stepping Numbers q = [] q.append(num) while len(q) > 0 : # Get the front element and pop from the queue stepNum = q[0] q.pop(0); # If the Stepping Number is in the range # [n m] then display if (stepNum <= m and stepNum >= n) : print(stepNum end = ' ') # If Stepping Number is 0 or greater than m # no need to explore the neighbors if (num == 0 or stepNum > m) : continue # Get the last digit of the currently visited # Stepping Number lastDigit = stepNum % 10 # There can be 2 cases either digit to be # appended is lastDigit + 1 or lastDigit - 1 stepNumA = stepNum * 10 + (lastDigit- 1) stepNumB = stepNum * 10 + (lastDigit + 1) # If lastDigit is 0 then only possible digit # after 0 can be 1 for a Stepping Number if (lastDigit == 0) : q.append(stepNumB) #If lastDigit is 9 then only possible #digit after 9 can be 8 for a Stepping #Number elif (lastDigit == 9) : q.append(stepNumA) else : q.append(stepNumA) q.append(stepNumB) # Prints all stepping numbers in range [n m] # using BFS. def displaySteppingNumbers(n m) : # For every single digit Number 'i' # find all the Stepping Numbers # starting with i for i in range(10) : bfs(n m i) # Driver code n m = 0 21 # Display Stepping Numbers in the # range [nm] displaySteppingNumbers(n m) # This code is contributed by divyeshrabadiya07. 
C#
// A C# program to find all the Stepping Number in // range [n m] using System; using System.Collections.Generic; public class GFG {    // Prints all stepping numbers reachable from num  // and in range [n m]  static void bfs(int n int m int num)  {    // Queue will contain all the stepping Numbers  Queue<int> q = new Queue<int>();  q.Enqueue(num);  while(q.Count != 0)  {    // Get the front element and pop from  // the queue  int stepNum = q.Dequeue();    // If the Stepping Number is in  // the range [nm] then display  if (stepNum <= m && stepNum >= n)  {  Console.Write(stepNum + ' ');  }    // If Stepping Number is 0 or greater  // then m no need to explore the neighbors  if (stepNum == 0 || stepNum > m)  continue;    // Get the last digit of the currently  // visited Stepping Number  int lastDigit = stepNum % 10;    // There can be 2 cases either digit  // to be appended is lastDigit + 1 or  // lastDigit - 1  int stepNumA = stepNum * 10 + (lastDigit- 1);  int stepNumB = stepNum * 10 + (lastDigit + 1);    // If lastDigit is 0 then only possible  // digit after 0 can be 1 for a Stepping  // Number  if (lastDigit == 0)  q.Enqueue(stepNumB);    // If lastDigit is 9 then only possible  // digit after 9 can be 8 for a Stepping  // Number  else if (lastDigit == 9)  q.Enqueue(stepNumA);  else  {  q.Enqueue(stepNumA);  q.Enqueue(stepNumB);  }  }  }    // Prints all stepping numbers in range [n m]  // using BFS.  static void displaySteppingNumbers(int nint m)  {  // For every single digit Number 'i'  // find all the Stepping Numbers  // starting with i  for (int i = 0 ; i <= 9 ; i++)  bfs(n m i);  }    // Driver code  static public void Main ()  {  int n = 0 m = 21;    // Display Stepping Numbers in  // the range [nm]  displaySteppingNumbers(nm);  } } // This code is contributed by avanitrachhadiya2155 
JavaScript
<script> // A Javascript program to find all // the Stepping Number in // range [n m]    // Prints all stepping numbers   // reachable from num  // and in range [n m]  function bfs(nmnum)  {  // Queue will contain all the   // stepping Numbers  let q = [];    q.push(num);    while (q.length!=0)  {  // Get the front element and pop from  // the queue  let stepNum = q.shift();    // If the Stepping Number is in  // the range [nm] then display  if (stepNum <= m && stepNum >= n)  {  document.write(stepNum + ' ');  }    // If Stepping Number is 0 or greater  // then m no need to explore the neighbors  if (stepNum == 0 || stepNum > m)  continue;    // Get the last digit of the currently  // visited Stepping Number  let lastDigit = stepNum % 10;    // There can be 2 cases either digit  // to be appended is lastDigit + 1 or  // lastDigit - 1  let stepNumA = stepNum * 10 + (lastDigit- 1);  let stepNumB = stepNum * 10 + (lastDigit + 1);    // If lastDigit is 0 then only possible  // digit after 0 can be 1 for a Stepping  // Number  if (lastDigit == 0)  q.push(stepNumB);    // If lastDigit is 9 then only possible  // digit after 9 can be 8 for a Stepping  // Number  else if (lastDigit == 9)  q.push(stepNumA);    else  {  q.push(stepNumA);  q.push(stepNumB);  }  }  }    // Prints all stepping numbers in range [n m]  // using BFS.  function displaySteppingNumbers(nm)  {  // For every single digit Number 'i'  // find all the Stepping Numbers  // starting with i  for (let i = 0 ; i <= 9 ; i++)  bfs(n m i);  }      // Driver code  let n = 0 m = 21;    // Display Stepping Numbers in  // the range [nm]  displaySteppingNumbers(nm);      // This code is contributed by unknown2108   </script> 

Izvade
0 1 10 12 2 21 3 4 5 6 7 8 9 

DFS balstīts risinājums:

C++
// A C++ program to find all the Stepping Numbers // in range [n m] using DFS Approach #include   using namespace std; // Prints all stepping numbers reachable from num // and in range [n m] void dfs(int n int m int stepNum) {  // If Stepping Number is in the  // range [nm] then display  if (stepNum <= m && stepNum >= n)  cout << stepNum << ' ';  // If Stepping Number is 0 or greater  // than m then return  if (stepNum == 0 || stepNum > m)  return ;  // Get the last digit of the currently  // visited Stepping Number  int lastDigit = stepNum % 10;  // There can be 2 cases either digit  // to be appended is lastDigit + 1 or  // lastDigit - 1  int stepNumA = stepNum*10 + (lastDigit-1);  int stepNumB = stepNum*10 + (lastDigit+1);  // If lastDigit is 0 then only possible  // digit after 0 can be 1 for a Stepping  // Number  if (lastDigit == 0)  dfs(n m stepNumB);  // If lastDigit is 9 then only possible  // digit after 9 can be 8 for a Stepping  // Number  else if(lastDigit == 9)  dfs(n m stepNumA);  else  {  dfs(n m stepNumA);  dfs(n m stepNumB);  } } // Method displays all the stepping // numbers in range [n m] void displaySteppingNumbers(int n int m) {  // For every single digit Number 'i'  // find all the Stepping Numbers  // starting with i  for (int i = 0 ; i <= 9 ; i++)  dfs(n m i); } //Driver program to test above function int main() {  int n = 0 m = 21;  // Display Stepping Numbers in  // the range [nm]  displaySteppingNumbers(nm);  return 0; } 
Java
// A Java program to find all the Stepping Numbers // in range [n m] using DFS Approach import java.util.*; class Main {  // Method display's all the stepping numbers  // in range [n m]  public static void dfs(int nint mint stepNum)  {  // If Stepping Number is in the  // range [nm] then display  if (stepNum <= m && stepNum >= n)  System.out.print(stepNum + ' ');  // If Stepping Number is 0 or greater  // than m then return  if (stepNum == 0 || stepNum > m)  return ;  // Get the last digit of the currently  // visited Stepping Number  int lastDigit = stepNum % 10;  // There can be 2 cases either digit  // to be appended is lastDigit + 1 or  // lastDigit - 1  int stepNumA = stepNum*10 + (lastDigit-1);  int stepNumB = stepNum*10 + (lastDigit+1);  // If lastDigit is 0 then only possible  // digit after 0 can be 1 for a Stepping  // Number  if (lastDigit == 0)  dfs(n m stepNumB);  // If lastDigit is 9 then only possible  // digit after 9 can be 8 for a Stepping  // Number  else if(lastDigit == 9)  dfs(n m stepNumA);  else  {  dfs(n m stepNumA);  dfs(n m stepNumB);  }  }  // Prints all stepping numbers in range [n m]  // using DFS.  public static void displaySteppingNumbers(int n int m)  {  // For every single digit Number 'i'  // find all the Stepping Numbers  // starting with i  for (int i = 0 ; i <= 9 ; i++)  dfs(n m i);  }  // Driver code  public static void main(String args[])  {  int n = 0 m = 21;  // Display Stepping Numbers in  // the range [nm]  displaySteppingNumbers(nm);  } } 
Python3
# A Python3 program to find all the Stepping Numbers # in range [n m] using DFS Approach # Prints all stepping numbers reachable from num # and in range [n m] def dfs(n m stepNum) : # If Stepping Number is in the # range [nm] then display if (stepNum <= m and stepNum >= n) : print(stepNum end = ' ') # If Stepping Number is 0 or greater # than m then return if (stepNum == 0 or stepNum > m) : return # Get the last digit of the currently # visited Stepping Number lastDigit = stepNum % 10 # There can be 2 cases either digit # to be appended is lastDigit + 1 or # lastDigit - 1 stepNumA = stepNum * 10 + (lastDigit - 1) stepNumB = stepNum * 10 + (lastDigit + 1) # If lastDigit is 0 then only possible # digit after 0 can be 1 for a Stepping # Number if (lastDigit == 0) : dfs(n m stepNumB) # If lastDigit is 9 then only possible # digit after 9 can be 8 for a Stepping # Number elif(lastDigit == 9) : dfs(n m stepNumA) else : dfs(n m stepNumA) dfs(n m stepNumB) # Method displays all the stepping # numbers in range [n m] def displaySteppingNumbers(n m) : # For every single digit Number 'i' # find all the Stepping Numbers # starting with i for i in range(10) : dfs(n m i) n m = 0 21 # Display Stepping Numbers in # the range [nm] displaySteppingNumbers(n m) # This code is contributed by divyesh072019. 
C#
// A C# program to find all the Stepping Numbers // in range [n m] using DFS Approach using System; public class GFG {  // Method display's all the stepping numbers  // in range [n m]  static void dfs(int n int m int stepNum)  {  // If Stepping Number is in the  // range [nm] then display  if (stepNum <= m && stepNum >= n)  Console.Write(stepNum + ' ');  // If Stepping Number is 0 or greater  // than m then return  if (stepNum == 0 || stepNum > m)  return ;  // Get the last digit of the currently  // visited Stepping Number  int lastDigit = stepNum % 10;  // There can be 2 cases either digit  // to be appended is lastDigit + 1 or  // lastDigit - 1  int stepNumA = stepNum*10 + (lastDigit - 1);  int stepNumB = stepNum*10 + (lastDigit + 1);  // If lastDigit is 0 then only possible  // digit after 0 can be 1 for a Stepping  // Number  if (lastDigit == 0)  dfs(n m stepNumB);  // If lastDigit is 9 then only possible  // digit after 9 can be 8 for a Stepping  // Number  else if(lastDigit == 9)  dfs(n m stepNumA);  else  {  dfs(n m stepNumA);  dfs(n m stepNumB);  }  }  // Prints all stepping numbers in range [n m]  // using DFS.  public static void displaySteppingNumbers(int n int m)  {  // For every single digit Number 'i'  // find all the Stepping Numbers  // starting with i  for (int i = 0 ; i <= 9 ; i++)  dfs(n m i);  }  // Driver code  static public void Main ()  {  int n = 0 m = 21;  // Display Stepping Numbers in  // the range [nm]  displaySteppingNumbers(nm);  } } // This code is contributed by rag2127. 
JavaScript
<script> // A Javascript program to find all the Stepping Numbers // in range [n m] using DFS Approach // Method display's all the stepping numbers  // in range [n m] function dfs(n m stepNum) {  // If Stepping Number is in the  // range [nm] then display  if (stepNum <= m && stepNum >= n)  document.write(stepNum + ' ');    // If Stepping Number is 0 or greater  // than m then return  if (stepNum == 0 || stepNum > m)  return ;    // Get the last digit of the currently  // visited Stepping Number  let lastDigit = stepNum % 10;    // There can be 2 cases either digit  // to be appended is lastDigit + 1 or  // lastDigit - 1  let stepNumA = stepNum*10 + (lastDigit-1);  let stepNumB = stepNum*10 + (lastDigit+1);    // If lastDigit is 0 then only possible  // digit after 0 can be 1 for a Stepping  // Number  if (lastDigit == 0)  dfs(n m stepNumB);    // If lastDigit is 9 then only possible  // digit after 9 can be 8 for a Stepping  // Number  else if(lastDigit == 9)  dfs(n m stepNumA);  else  {  dfs(n m stepNumA);  dfs(n m stepNumB);  } } // Prints all stepping numbers in range [n m]  // using DFS. function displaySteppingNumbers(n m) {  // For every single digit Number 'i'  // find all the Stepping Numbers  // starting with i  for (let i = 0 ; i <= 9 ; i++)  dfs(n m i); } // Driver code let n = 0 m = 21;   // Display Stepping Numbers in // the range [nm] displaySteppingNumbers(nm); // This code is contributed by ab2127 </script> 

Izvade
0 1 10 12 2 21 3 4 5 6 7 8 9 

Laika sarežģītība: O(N log N)

Telpas sarežģītība: O(N) šeit N ir soļu skaitļu skaits diapazonā.