logo

Bruņinieka varbūtība palikt šaha galdiņā

Izmēģiniet to GfG Practice ' title=

Ņemot vērā a n*n šaha galds un bruņinieks pozīciju (x y) katru reizi, kad bruņinieks ir jāpārvieto, tas izvēlas vienu no astoņiem iespējamiem gājieniem vienādi nejauši (pat ja figūra nokristu no šaha dēļa) un kustas tur. Bruņinieks turpinās pārvietojas, līdz tas ir izdarījis precīzi k kustas vai ir pārcēlās prom šaha galds. Uzdevums ir atrast uz varbūtība ka bruņinieks paliek uz dēlis pēc tam, kad tā ir bijusi apstājās pārvietojas.

Piezīme: Šaha bruņinieks var izdarīt astoņus iespējamos gājienus. Katra kustība ir divas šūnas kardinālā virzienā, pēc tam viena šūna ortogonālā virzienā.

Piemēri:  



Ievade: n = 8 x = 0 y = 0 k = 1
Izvade: 0.25
Paskaidrojums: Bruņinieks sāk no (0 0) un pēc viena soļa speršanas gulēs galda iekšpusē tikai 2 no 8 pozīcijām, kas ir (1 2) un (2 1). Tādējādi varbūtība būs 2/8 = 0,25.

Ievade: n = 8 x = 0 y = 0 k = 3
Izvade: 0,125

Ievade: n = 4 x = 1 y = 2 k = 4
Izvade: 0,024414

Satura rādītājs

No augšas uz leju Dp izmantošana (atgādināšana) — O(n*n*k) laiks un O(n*n*k) telpa

Varbūtība, ka bruņinieks paliks šaha galdiņā pēc k gājienu, ir vienāda ar vidējo bruņinieka iespējamību iepriekšējās astoņās pozīcijās pēc k - 1 gājiena. Tāpat varbūtība pēc k-1 gājieniem ir atkarīga no vidējās varbūtības pēc k-2 gājieniem. Ideja ir izmantot iegaumēšana lai saglabātu iepriekšējo gājienu varbūtības un atrastu to vidējo, lai aprēķinātu gala rezultātu.
Lai to izdarītu, izveidojiet a 3D masīva piezīme[][][] kur piezīme[i][j][k] saglabā varbūtību, ka bruņinieks būs šūnā (i j) pēc k pārvietošanās. Ja k ir nulle, t.i., ir sasniegts sākuma stāvoklis atgriešanās 1 citādi izpētiet iepriekšējās astoņas pozīcijas un atrodiet to varbūtību vidējo vērtību.

C++
// C++ program to find the probability of the // knight to remain inside the chessboard #include    using namespace std; // recursive function to calculate // knight probability double knightProbability(int n int x int y int k   vector<vector<vector<double>>> &memo){  // Base case initial probability  if(k == 0) return 1.0;  // check if already calculated  if(memo[x][y][k] != -1) return memo[x][y][k];  vector<vector<int>> directions = {{1 2} {2 1} {2 -1}  {1 -2} {-1 -2} {-2 -1} {-2 1} {-1 2}};  memo[x][y][k] = 0;  double cur = 0.0;  // for every position reachable from (xy)  for(auto d:directions){  int u = x + d[0];  int v = y + d[1];  // if this position lie inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += knightProbability(n u v k-1 memo) / 8.0;  }  return memo[x][y][k] = cur; } // Function to find the probability double findProb(int n int x int y int k) {  // Initialize memo to store results  vector<vector<vector<double>>> memo(n   vector<vector<double>>(n  vector<double> (k+1 -1)));  return knightProbability(n x y k memo); } int main(){  int n = 8 x = 0 y = 0 k = 3;  cout << findProb(n x y k) << endl;  return 0; } 
Java
// Java program to find the probability of the // knight to remain inside the chessboard class GfG {  // recursive function to calculate  // knight probability  static double knightProbability(int n int x   int y int k double[][][] memo) {  // Base case initial probability  if (k == 0) return 1.0;  // check if already calculated  if (memo[x][y][k] != -1) return memo[x][y][k];  int[][] directions = {{1 2} {2 1} {2 -1} {1 -2}  {-1 -2} {-2 -1} {-2 1} {-1 2}};  memo[x][y][k] = 0;  double cur = 0.0;  // for every position reachable from (x y)  for (int[] d : directions) {  int u = x + d[0];  int v = y + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += knightProbability(n u v k - 1 memo) / 8.0;  }  return memo[x][y][k] = cur;  }  // Function to find the probability  static double findProb(int n int x int y int k) {  // Initialize memo to store results  double[][][] memo = new double[n][n][k + 1];  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  for (int m = 0; m <= k; m++) {  memo[i][j][m] = -1;  }  }  }  return knightProbability(n x y k memo);  }  public static void main(String[] args) {  int n = 8 x = 0 y = 0 k = 3;  System.out.println(findProb(n x y k));  } } 
Python
# Python program to find the probability of the # knight to remain inside the chessboard # recursive function to calculate # knight probability def knightProbability(n x y k memo): # Base case initial probability if k == 0: return 1.0 # check if already calculated if memo[x][y][k] != -1: return memo[x][y][k] directions = [ [1 2] [2 1] [2 -1] [1 -2] [-1 -2] [-2 -1] [-2 1] [-1 2] ] memo[x][y][k] = 0 cur = 0.0 # for every position reachable from (x y) for d in directions: u = x + d[0] v = y + d[1] # if this position lies inside the board if 0 <= u < n and 0 <= v < n: cur += knightProbability(n u v k - 1 memo) / 8.0 memo[x][y][k] = cur return cur # Function to find the probability def findProb(n x y k): # Initialize memo to store results memo = [[[-1 for _ in range(k + 1)] for _ in range(n)] for _ in range(n)] return knightProbability(n x y k memo) n x y k = 8 0 0 3 print(findProb(n x y k)) 
C#
// C# program to find the probability of the // knight to remain inside the chessboard using System; class GfG {  // recursive function to calculate  // knight probability  static double KnightProbability(int n int x   int y int k double[] memo) {  // Base case initial probability  if (k == 0) return 1.0;  // check if already calculated  if (memo[x y k] != -1) return memo[x y k];  int[] directions = {{1 2} {2 1} {2 -1} {1 -2}  {-1 -2} {-2 -1} {-2 1} {-1 2}};  memo[x y k] = 0;  double cur = 0.0;  // for every position reachable from (x y)  for (int i = 0; i < 8; i++) {  int u = x + directions[i 0];  int v = y + directions[i 1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n) {  cur += KnightProbability(n u v k - 1 memo) / 8.0;  }  }  return memo[x y k] = cur;  }  // Function to find the probability  static double FindProb(int n int x int y int k) {  // Initialize memo to store results  double[] memo = new double[n n k + 1];  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  for (int m = 0; m <= k; m++) {  memo[i j m] = -1;  }  }  }  return KnightProbability(n x y k memo);  }  static void Main() {  int n = 8 x = 0 y = 0 k = 3;  Console.WriteLine(FindProb(n x y k));  } } 
JavaScript
// JavaScript program to find the probability of the // knight to remain inside the chessboard // recursive function to calculate // knight probability function knightProbability(n x y k memo) {  // Base case initial probability  if (k === 0) return 1.0;  // check if already calculated  if (memo[x][y][k] !== -1) return memo[x][y][k];  const directions = [  [1 2] [2 1] [2 -1] [1 -2]  [-1 -2] [-2 -1] [-2 1] [-1 2]  ];  memo[x][y][k] = 0;  let cur = 0.0;  // for every position reachable from (x y)  for (let d of directions) {  const u = x + d[0];  const v = y + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n) {  cur += knightProbability(n u v k - 1 memo) / 8.0;  }  }  return memo[x][y][k] = cur; } // Function to find the probability function findProb(n x y k) {  // Initialize memo to store results  const memo = Array.from({ length: n } () =>  Array.from({ length: n } () => Array(k + 1).fill(-1)));  return knightProbability(n x y k memo).toFixed(6); } const n = 8 x = 0 y = 0 k = 3;  console.log(findProb(n x y k)); 

Izvade
0.125 

No apakšas uz augšu Dp (tabulācijas) izmantošana — O(n*n*k) laiks un O(n*n*k) telpa

Iepriekš minēto pieeju var optimizēt, izmantojot no apakšas uz augšu tabulēšana, samazinot papildu vietu, kas nepieciešama rekursīvai stekam. Ideja ir saglabāt 3 D masīvs dp[][][] kur dp[i][j][k] saglabā iespējamību, ka bruņinieks būs šūnā (i j) pēc k kustas. Inicializējiet 0 stāvoklis dp ar vērtību 1 . Katrai nākamajai kustībai varbūtība no bruņinieka būs vienāds uz vidēji no varbūtības iepriekšējā 8 pozīcijas pēc k-1 kustas.

C++
// C++ program to find the probability of the // knight to remain inside the chessboard #include    using namespace std; // Function to find the probability double findProb(int n int x int y int k) {  // Initialize dp to store results of each step  vector<vector<vector<double>>> dp(n   vector<vector<double>>(n  vector<double> (k+1)));    // Initialize dp for step 0  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  dp[i][j][0] = 1.0;  }  }  vector<vector<int>> directions = {  {1 2} {2 1} {2 -1} {1 -2}   {-1 -2} {-2 -1} {-2 1} {-1 2}  };  for (int move = 1; move <= k; move++) {    // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (xy)  for (auto d:directions) {  int u = i + d[0];  int v = j + d[1];  // if this position lie inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += dp[u][v][move - 1] / 8.0;  }  // store the result  dp[i][j][move] = cur;  }  }  }  // return the result  return dp[x][y][k]; } int main(){  int n = 8 x = 0 y = 0 k = 3;  cout << findProb(n x y k) << endl;  return 0; } 
Java
// Java program to find the probability of the // knight to remain inside the chessboard import java.util.*; class GfG {  // Function to find the probability  static double findProb(int n int x int y int k) {  // Initialize dp to store results of each step  double[][][] dp = new double[n][n][k + 1];  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  dp[i][j][0] = 1;  }  }  int[][] directions = {  {1 2} {2 1} {2 -1} {1 -2}   {-1 -2} {-2 -1} {-2 1} {-1 2}  };  for (int move = 1; move <= k; move++) {  // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (x y)  for (int[] d : directions) {  int u = i + d[0];  int v = j + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n) {  cur += dp[u][v][move - 1] / 8.0;  }  }  // store the result  dp[i][j][move] = cur;  }  }  }  // return the result  return dp[x][y][k];  }  public static void main(String[] args) {  int n = 8 x = 0 y = 0 k = 3;  System.out.println(findProb(n x y k));  } } 
Python
# Python program to find the probability of the # knight to remain inside the chessboard # Function to find the probability def findProb(n x y k): # Initialize dp to store results of each step dp = [[[0 for _ in range(k + 1)] for _ in range(n)] for _ in range(n)] for i in range(n): for j in range(n): dp[i][j][0] = 1.0 directions = [[1 2] [2 1] [2 -1] [1 -2] [-1 -2] [-2 -1] [-2 1] [-1 2]] for move in range(1 k + 1): # find probability for cell (i j) for i in range(n): for j in range(n): cur = 0.0 # for every position reachable from (x y) for d in directions: u = i + d[0] v = j + d[1] # if this position lies inside the board if 0 <= u < n and 0 <= v < n: cur += dp[u][v][move - 1] / 8.0 # store the result dp[i][j][move] = cur # return the result return dp[x][y][k] if __name__ == '__main__': n x y k = 8 0 0 3 print(findProb(n x y k)) 
C#
// C# program to find the probability of the // knight to remain inside the chessboard using System; class GfG {  // Function to find the probability  static double findProb(int n int x int y int k) {  // Initialize dp to store results of each step  double[] dp = new double[n n k + 1];  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  dp[i j 0] = 1.0;  }  }  int[] directions = {{1 2} {2 1} {2 -1} {1 -2}   {-1 -2} {-2 -1} {-2 1} {-1 2}};  for (int move = 1; move <= k; move++) {  // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (x y)  for (int d = 0; d < directions.GetLength(0); d++) {  int u = i + directions[d 0];  int v = j + directions[d 1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n) {  cur += dp[u v move - 1] / 8.0;  }  }  // store the result  dp[i j move] = cur;  }  }  }  // return the result  return dp[x y k];  }  static void Main(string[] args) {  int n = 8 x = 0 y = 0 k = 3;  Console.WriteLine(findProb(n x y k));  } } 
JavaScript
// JavaScript program to find the probability of the // knight to remain inside the chessboard // Function to find the probability function findProb(n x y k) {  // Initialize dp to store results of each step  let dp = Array.from({ length: n } () =>   Array.from({ length: n } () => Array(k + 1).fill(0))  );  // Initialize dp for step 0  for (let i = 0; i < n; ++i) {  for (let j = 0; j < n; ++j) {  dp[i][j][0] = 1.0;  }  }    let directions = [[1 2] [2 1] [2 -1] [1 -2]   [-1 -2] [-2 -1] [-2 1] [-1 2]];  for (let move = 1; move <= k; move++) {    // find probability for cell (i j)  for (let i = 0; i < n; i++) {  for (let j = 0; j < n; j++) {  let cur = 0.0;  // for every position reachable from (x y)  for (let d of directions) {  let u = i + d[0];  let v = j + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n) {  cur += dp[u][v][move - 1] / 8.0;  }  }  // store the result  dp[i][j][move] = cur;  }  }  }  // return the result  return dp[x][y][k].toFixed(6); } let n = 8 x = 0 y = 0 k = 3; console.log(findProb(n x y k)); 

Izvade
0.125 

Izmantojot telpu Optimizēts Dp - O(n*n*k) laiks un O(n*n) telpa

Iepriekš minētā pieeja prasa tikai iepriekšējā varbūtību stāvoklis, lai aprēķinātu strāva norādiet šādi tikai uz iepriekšējā veikals ir jāuzglabā. Ideja ir izveidot divus 2D masīvi prevMove[][] un currMove[][] kur

  • prevMove[i][j] saglabā iespējamību, ka bruņinieks būs (i j) punktā līdz iepriekšējai kustībai. Sākotnējam stāvoklim tas tiek inicializēts ar vērtību 1.
  • currMove[i][j] saglabā pašreizējā stāvokļa varbūtību.

Darbojas līdzīgi iepriekš minētajai pieejai un plkst beigas katras iterācijas atjaunināt iepriekšējoPārvietot[][] ar saglabāto vērtību currMove[][].

C++
// C++ program to find the probability of the // knight to remain inside the chessboard #include    using namespace std; // Function to find the probability double findProb(int n int x int y int k) {  // dp to store results of previous move  vector<vector<double>> prevMove(n vector<double>(n 1));  // dp to store results of current move  vector<vector<double>> currMove(n vector<double>(n 0));  vector<vector<int>> directions = {  {1 2} {2 1} {2 -1} {1 -2}   {-1 -2} {-2 -1} {-2 1} {-1 2}  };  for (int move = 1; move <= k; move++) {    // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (xy)  for (auto d:directions) {  int u = i + d[0];  int v = j + d[1];  // if this position lie inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += prevMove[u][v] / 8.0;  }  // store the result  currMove[i][j] = cur;  }  }  // update previous state  prevMove = currMove;  }  // return the result  return prevMove[x][y]; } int main(){  int n = 8 x = 0 y = 0 k = 3;  cout << findProb(n x y k) << endl;  return 0; } 
Java
// Java program to find the probability of the // knight to remain inside the chessboard class GfG {  // Function to find the probability  static double findProb(int n int x int y int k) {  // dp to store results of previous move  double[][] prevMove = new double[n][n];  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  prevMove[i][j] = 1.0;  }  }  // dp to store results of current move  double[][] currMove = new double[n][n];  int[][] directions = {  {1 2} {2 1} {2 -1} {1 -2}  {-1 -2} {-2 -1} {-2 1} {-1 2}  };  for (int move = 1; move <= k; move++) {  // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (xy)  for (int[] d : directions) {  int u = i + d[0];  int v = j + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += prevMove[u][v] / 8.0;  }  // store the result  currMove[i][j] = cur;  }  }  // update previous state  for (int i = 0; i < n; i++) {  System.arraycopy(currMove[i] 0 prevMove[i] 0 n);  }  }  // return the result  return prevMove[x][y];  }  public static void main(String[] args) {  int n = 8 x = 0 y = 0 k = 3;  System.out.println(findProb(n x y k));  } } 
Python
# Python program to find the probability of the # knight to remain inside the chessboard def findProb(n x y k): # dp to store results of previous move prevMove = [[1.0] * n for _ in range(n)] # dp to store results of current move currMove = [[0.0] * n for _ in range(n)] directions = [ [1 2] [2 1] [2 -1] [1 -2] [-1 -2] [-2 -1] [-2 1] [-1 2] ] for move in range(1 k + 1): # find probability for cell (i j) for i in range(n): for j in range(n): cur = 0.0 # for every position reachable from (xy) for d in directions: u v = i + d[0] j + d[1] # if this position lies inside the board if 0 <= u < n and 0 <= v < n: cur += prevMove[u][v] / 8.0 # store the result currMove[i][j] = cur # update previous state prevMove = [row[:] for row in currMove] # return the result return prevMove[x][y] if __name__ == '__main__': n x y k = 8 0 0 3 print(findProb(n x y k)) 
C#
// C# program to find the probability of the // knight to remain inside the chessboard using System; class GfG {  // Function to find the probability  static double findProb(int n int x int y int k) {  // dp to store results of previous move  double[] prevMove = new double[n n];  for (int i = 0; i < n; i++)  for (int j = 0; j < n; j++)  prevMove[i j] = 1.0;  // dp to store results of current move  double[] currMove = new double[n n];  int[] directions = {  {1 2} {2 1} {2 -1} {1 -2}  {-1 -2} {-2 -1} {-2 1} {-1 2}  };  for (int move = 1; move <= k; move++) {  // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (xy)  for (int d = 0; d < directions.GetLength(0); d++) {  int u = i + directions[d 0];  int v = j + directions[d 1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += prevMove[u v] / 8.0;  }  // store the result  currMove[i j] = cur;  }  }  // update previous state  Array.Copy(currMove prevMove n * n);  }  // return the result  return prevMove[x y];  }  static void Main() {  int n = 8 x = 0 y = 0 k = 3;  Console.WriteLine(findProb(n x y k));  } } 
JavaScript
// JavaScript program to find the probability of the // knight to remain inside the chessboard function findProb(n x y k) {  // dp to store results of previous move  let prevMove = Array.from({ length: n }   () => Array(n).fill(1.0));  // dp to store results of current move  let currMove = Array.from({ length: n }   () => Array(n).fill(0.0));  const directions = [  [1 2] [2 1] [2 -1] [1 -2]  [-1 -2] [-2 -1] [-2 1] [-1 2]  ];  for (let move = 1; move <= k; move++) {  // find probability for cell (i j)  for (let i = 0; i < n; i++) {  for (let j = 0; j < n; j++) {  let cur = 0.0;  // for every position reachable from (xy)  for (let d of directions) {  let u = i + d[0];  let v = j + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += prevMove[u][v] / 8.0;  }  // store the result  currMove[i][j] = cur;  }  }  // update previous state  prevMove = currMove.map(row => [...row]);  }  // return the result  return prevMove[x][y].toFixed(6); } let n = 8 x = 0 y = 0 k = 3; console.log(findProb(n x y k)); 

Izvade
0.125 
Izveidojiet viktorīnu