Ņemot vērā savienotu un nevirzītu grafiku, šī grafa aptverošais koks ir apakšgrafs, kas ir koks un savieno visas virsotnes kopā. Vienā diagrammā var būt daudz dažādu aptverošu koku. Minimālais reizinājuma aptverošais koks svērtam savienotam un nevirzītam grafikam ir aptverošs koks, kura svara reizinājums ir mazāks vai vienāds ar katra cita aptverošā koka svara reizinājumu. Aptverošā koka svara reizinājums ir svaru reizinājums, kas atbilst katrai aptverošā koka malai. Visi dotā grafika svari vienkāršības labad būs pozitīvi.
Piemēri:

Minimum Product that we can obtain is 180 for above graph by choosing edges 0-1 1-2 0-3 and 1-4
Šo problēmu var atrisināt, izmantojot standarta minimālo aptverošo koku algoritmus, piemēram, Kruskal ( https://www.geeksforgeeks.org/dsa/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/ ) un prim algoritmu, bet mums ir jāmaina savs grafiks, lai izmantotu šos algoritmus. Minimālā aptverošā koka algoritmi mēģina samazināt kopējo svaru summu, šeit mums ir jāsamazina kopējo svaru reizinājums. Mēs varam izmantot īpašumu logaritmi lai pārvarētu šo problēmu.
Kā mēs zinām
log(w1* w2 * w3 * …. * wN) = log(w1) + log(w2) + log(w3) ….. + log(wN)
Mēs varam aizstāt katru diagrammas svaru ar tā log vērtību, pēc tam mēs izmantojam jebkuru minimālā aptverošā koka algoritmu, kas mēģinās samazināt log(wi) summu, kas savukārt samazina svara reizinājumu.
Piemēram, grafikā soļi ir parādīti zemāk diagrammā

Zemāk esošajā kodā vispirms mēs esam izveidojuši log grafiku no dotā ievades grafika, pēc tam šis grafiks tiek dots kā ievade prim MST algoritmam, kas samazinās koka kopējo svaru summu. Tā kā modificētā grafika svari ir faktiskā ievades grafika logaritmi, mēs faktiski minimizējam aptverošā koka svaru reizinājumu.
// A C++ program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph #include // Number of vertices in the graph #define V 5 // A utility function to find the vertex with minimum // key value from the set of vertices not yet included // in MST int minKey(int key[] bool mstSet[]) { // Initialize min value int min = INT_MAX min_index; for (int v = 0; v < V; v++) if (mstSet[v] == false && key[v] < min) min = key[v] min_index = v; return min_index; } // A utility function to print the constructed MST // stored in parent[] and print Minimum Obtainable // product int printMST(int parent[] int n int graph[V][V]) { printf('Edge Weightn'); int minProduct = 1; for (int i = 1; i < V; i++) { printf('%d - %d %d n' parent[i] i graph[i][parent[i]]); minProduct *= graph[i][parent[i]]; } printf('Minimum Obtainable product is %dn' minProduct); } // Function to construct and print MST for a graph // represented using adjacency matrix representation // inputGraph is sent for printing actual edges and // logGraph is sent for actual MST operations void primMST(int inputGraph[V][V] double logGraph[V][V]) { int parent[V]; // Array to store constructed MST int key[V]; // Key values used to pick minimum // weight edge in cut bool mstSet[V]; // To represent set of vertices not // yet included in MST // Initialize all keys as INFINITE for (int i = 0; i < V; i++) key[i] = INT_MAX mstSet[i] = false; // Always include first 1st vertex in MST. key[0] = 0; // Make key 0 so that this vertex is // picked as first vertex parent[0] = -1; // First node is always root of MST // The MST will have V vertices for (int count = 0; count < V - 1; count++) { // Pick the minimum key vertex from the set of // vertices not yet included in MST int u = minKey(key mstSet); // Add the picked vertex to the MST Set mstSet[u] = true; // Update key value and parent index of the // adjacent vertices of the picked vertex. // Consider only those vertices which are not yet // included in MST for (int v = 0; v < V; v++) // logGraph[u][v] is non zero only for // adjacent vertices of m mstSet[v] is false // for vertices not yet included in MST // Update the key only if logGraph[u][v] is // smaller than key[v] if (logGraph[u][v] > 0 && mstSet[v] == false && logGraph[u][v] < key[v]) parent[v] = u key[v] = logGraph[u][v]; } // print the constructed MST printMST(parent V inputGraph); } // Method to get minimum product spanning tree void minimumProductMST(int graph[V][V]) { double logGraph[V][V]; // Constructing logGraph from original graph for (int i = 0; i < V; i++) { for (int j = 0; j < V; j++) { if (graph[i][j] > 0) logGraph[i][j] = log(graph[i][j]); else logGraph[i][j] = 0; } } // Applying standard Prim's MST algorithm on // Log graph. primMST(graph logGraph); } // driver program to test above function int main() { /* Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 */ int graph[V][V] = { { 0 2 0 6 0 } { 2 0 3 8 5 } { 0 3 0 0 7 } { 6 8 0 0 9 } { 0 5 7 9 0 } }; // Print the solution minimumProductMST(graph); return 0; }
Java // A Java program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph import java.util.*; class GFG { // Number of vertices in the graph static int V = 5; // A utility function to find the vertex with minimum // key value from the set of vertices not yet included // in MST static int minKey(int key[] boolean[] mstSet) { // Initialize min value int min = Integer.MAX_VALUE min_index = 0; for (int v = 0; v < V; v++) { if (mstSet[v] == false && key[v] < min) { min = key[v]; min_index = v; } } return min_index; } // A utility function to print the constructed MST // stored in parent[] and print Minimum Obtainable // product static void printMST(int parent[] int n int graph[][]) { System.out.printf('Edge Weightn'); int minProduct = 1; for (int i = 1; i < V; i++) { System.out.printf('%d - %d %d n' parent[i] i graph[i][parent[i]]); minProduct *= graph[i][parent[i]]; } System.out.printf('Minimum Obtainable product is %dn' minProduct); } // Function to construct and print MST for a graph // represented using adjacency matrix representation // inputGraph is sent for printing actual edges and // logGraph is sent for actual MST operations static void primMST(int inputGraph[][] double logGraph[][]) { int[] parent = new int[V]; // Array to store constructed MST int[] key = new int[V]; // Key values used to pick minimum // weight edge in cut boolean[] mstSet = new boolean[V]; // To represent set of vertices not // yet included in MST // Initialize all keys as INFINITE for (int i = 0; i < V; i++) { key[i] = Integer.MAX_VALUE; mstSet[i] = false; } // Always include first 1st vertex in MST. key[0] = 0; // Make key 0 so that this vertex is // picked as first vertex parent[0] = -1; // First node is always root of MST // The MST will have V vertices for (int count = 0; count < V - 1; count++) { // Pick the minimum key vertex from the set of // vertices not yet included in MST int u = minKey(key mstSet); // Add the picked vertex to the MST Set mstSet[u] = true; // Update key value and parent index of the // adjacent vertices of the picked vertex. // Consider only those vertices which are not yet // included in MST for (int v = 0; v < V; v++) // logGraph[u][v] is non zero only for // adjacent vertices of m mstSet[v] is false // for vertices not yet included in MST // Update the key only if logGraph[u][v] is // smaller than key[v] { if (logGraph[u][v] > 0 && mstSet[v] == false && logGraph[u][v] < key[v]) { parent[v] = u; key[v] = (int)logGraph[u][v]; } } } // print the constructed MST printMST(parent V inputGraph); } // Method to get minimum product spanning tree static void minimumProductMST(int graph[][]) { double[][] logGraph = new double[V][V]; // Constructing logGraph from original graph for (int i = 0; i < V; i++) { for (int j = 0; j < V; j++) { if (graph[i][j] > 0) { logGraph[i][j] = Math.log(graph[i][j]); } else { logGraph[i][j] = 0; } } } // Applying standard Prim's MST algorithm on // Log graph. primMST(graph logGraph); } // Driver code public static void main(String[] args) { /* Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 */ int graph[][] = { { 0 2 0 6 0 } { 2 0 3 8 5 } { 0 3 0 0 7 } { 6 8 0 0 9 } { 0 5 7 9 0 } }; // Print the solution minimumProductMST(graph); } } // This code has been contributed by 29AjayKumar
Python3 # A Python3 program for getting minimum # product spanning tree The program is # for adjacency matrix representation # of the graph import math # Number of vertices in the graph V = 5 # A utility function to find the vertex # with minimum key value from the set # of vertices not yet included in MST def minKey(key mstSet): # Initialize min value min = 10000000 min_index = 0 for v in range(V): if (mstSet[v] == False and key[v] < min): min = key[v] min_index = v return min_index # A utility function to print the constructed # MST stored in parent[] and print Minimum # Obtainable product def printMST(parent n graph): print('Edge Weight') minProduct = 1 for i in range(1 V): print('{} - {} {} '.format(parent[i] i graph[i][parent[i]])) minProduct *= graph[i][parent[i]] print('Minimum Obtainable product is {}'.format( minProduct)) # Function to construct and print MST for # a graph represented using adjacency # matrix representation inputGraph is # sent for printing actual edges and # logGraph is sent for actual MST # operations def primMST(inputGraph logGraph): # Array to store constructed MST parent = [0 for i in range(V)] # Key values used to pick minimum key = [10000000 for i in range(V)] # weight edge in cut # To represent set of vertices not mstSet = [False for i in range(V)] # Yet included in MST # Always include first 1st vertex in MST # Make key 0 so that this vertex is key[0] = 0 # Picked as first vertex # First node is always root of MST parent[0] = -1 # The MST will have V vertices for count in range(0 V - 1): # Pick the minimum key vertex from # the set of vertices not yet # included in MST u = minKey(key mstSet) # Add the picked vertex to the MST Set mstSet[u] = True # Update key value and parent index # of the adjacent vertices of the # picked vertex. Consider only those # vertices which are not yet # included in MST for v in range(V): # logGraph[u][v] is non zero only # for adjacent vertices of m # mstSet[v] is false for vertices # not yet included in MST. Update # the key only if logGraph[u][v] is # smaller than key[v] if (logGraph[u][v] > 0 and mstSet[v] == False and logGraph[u][v] < key[v]): parent[v] = u key[v] = logGraph[u][v] # Print the constructed MST printMST(parent V inputGraph) # Method to get minimum product spanning tree def minimumProductMST(graph): logGraph = [[0 for j in range(V)] for i in range(V)] # Constructing logGraph from # original graph for i in range(V): for j in range(V): if (graph[i][j] > 0): logGraph[i][j] = math.log(graph[i][j]) else: logGraph[i][j] = 0 # Applying standard Prim's MST algorithm # on Log graph. primMST(graph logGraph) # Driver code if __name__=='__main__': ''' Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 ''' graph = [ [ 0 2 0 6 0 ] [ 2 0 3 8 5 ] [ 0 3 0 0 7 ] [ 6 8 0 0 9 ] [ 0 5 7 9 0 ] ] # Print the solution minimumProductMST(graph) # This code is contributed by rutvik_56
C# // C# program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph using System; class GFG { // Number of vertices in the graph static int V = 5; // A utility function to find the vertex with minimum // key value from the set of vertices not yet included // in MST static int minKey(int[] key Boolean[] mstSet) { // Initialize min value int min = int.MaxValue min_index = 0; for (int v = 0; v < V; v++) { if (mstSet[v] == false && key[v] < min) { min = key[v]; min_index = v; } } return min_index; } // A utility function to print the constructed MST // stored in parent[] and print Minimum Obtainable // product static void printMST(int[] parent int n int[ ] graph) { Console.Write('Edge Weightn'); int minProduct = 1; for (int i = 1; i < V; i++) { Console.Write('{0} - {1} {2} n' parent[i] i graph[i parent[i]]); minProduct *= graph[i parent[i]]; } Console.Write('Minimum Obtainable product is {0}n' minProduct); } // Function to construct and print MST for a graph // represented using adjacency matrix representation // inputGraph is sent for printing actual edges and // logGraph is sent for actual MST operations static void primMST(int[ ] inputGraph double[ ] logGraph) { int[] parent = new int[V]; // Array to store constructed MST int[] key = new int[V]; // Key values used to pick minimum // weight edge in cut Boolean[] mstSet = new Boolean[V]; // To represent set of vertices not // yet included in MST // Initialize all keys as INFINITE for (int i = 0; i < V; i++) { key[i] = int.MaxValue; mstSet[i] = false; } // Always include first 1st vertex in MST. key[0] = 0; // Make key 0 so that this vertex is // picked as first vertex parent[0] = -1; // First node is always root of MST // The MST will have V vertices for (int count = 0; count < V - 1; count++) { // Pick the minimum key vertex from the set of // vertices not yet included in MST int u = minKey(key mstSet); // Add the picked vertex to the MST Set mstSet[u] = true; // Update key value and parent index of the // adjacent vertices of the picked vertex. // Consider only those vertices which are not yet // included in MST for (int v = 0; v < V; v++) // logGraph[u v] is non zero only for // adjacent vertices of m mstSet[v] is false // for vertices not yet included in MST // Update the key only if logGraph[u v] is // smaller than key[v] { if (logGraph[u v] > 0 && mstSet[v] == false && logGraph[u v] < key[v]) { parent[v] = u; key[v] = (int)logGraph[u v]; } } } // print the constructed MST printMST(parent V inputGraph); } // Method to get minimum product spanning tree static void minimumProductMST(int[ ] graph) { double[ ] logGraph = new double[V V]; // Constructing logGraph from original graph for (int i = 0; i < V; i++) { for (int j = 0; j < V; j++) { if (graph[i j] > 0) { logGraph[i j] = Math.Log(graph[i j]); } else { logGraph[i j] = 0; } } } // Applying standard Prim's MST algorithm on // Log graph. primMST(graph logGraph); } // Driver code public static void Main(String[] args) { /* Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 */ int[ ] graph = { { 0 2 0 6 0 } { 2 0 3 8 5 } { 0 3 0 0 7 } { 6 8 0 0 9 } { 0 5 7 9 0 } }; // Print the solution minimumProductMST(graph); } } /* This code contributed by PrinciRaj1992 */
JavaScript <script> // A Javascript program for getting minimum product // spanning tree The program is for adjacency matrix // representation of the graph // Number of vertices in the graph let V = 5; // A utility function to find the vertex with minimum // key value from the set of vertices not yet included // in MST function minKey(keymstSet) { // Initialize min value let min = Number.MAX_VALUE min_index = 0; for (let v = 0; v < V; v++) { if (mstSet[v] == false && key[v] < min) { min = key[v]; min_index = v; } } return min_index; } // A utility function to print the constructed MST // stored in parent[] and print Minimum Obtainable // product function printMST(parentngraph) { document.write('Edge Weight
'); let minProduct = 1; for (let i = 1; i < V; i++) { document.write( parent[i]+' - '+ i+' ' +graph[i][parent[i]]+'
'); minProduct *= graph[i][parent[i]]; } document.write('Minimum Obtainable product is ' minProduct+'
'); } // Function to construct and print MST for a graph // represented using adjacency matrix representation // inputGraph is sent for printing actual edges and // logGraph is sent for actual MST operations function primMST(inputGraphlogGraph) { let parent = new Array(V); // Array to store constructed MST let key = new Array(V); // Key values used to pick minimum // weight edge in cut let mstSet = new Array(V); // To represent set of vertices not // yet included in MST // Initialize all keys as INFINITE for (let i = 0; i < V; i++) { key[i] = Number.MAX_VALUE; mstSet[i] = false; } // Always include first 1st vertex in MST. key[0] = 0; // Make key 0 so that this vertex is // picked as first vertex parent[0] = -1; // First node is always root of MST // The MST will have V vertices for (let count = 0; count < V - 1; count++) { // Pick the minimum key vertex from the set of // vertices not yet included in MST let u = minKey(key mstSet); // Add the picked vertex to the MST Set mstSet[u] = true; // Update key value and parent index of the // adjacent vertices of the picked vertex. // Consider only those vertices which are not yet // included in MST for (let v = 0; v < V; v++) // logGraph[u][v] is non zero only for // adjacent vertices of m mstSet[v] is false // for vertices not yet included in MST // Update the key only if logGraph[u][v] is // smaller than key[v] { if (logGraph[u][v] > 0 && mstSet[v] == false && logGraph[u][v] < key[v]) { parent[v] = u; key[v] = logGraph[u][v]; } } } // print the constructed MST printMST(parent V inputGraph); } // Method to get minimum product spanning tree function minimumProductMST(graph) { let logGraph = new Array(V); // Constructing logGraph from original graph for (let i = 0; i < V; i++) { logGraph[i]=new Array(V); for (let j = 0; j < V; j++) { if (graph[i][j] > 0) { logGraph[i][j] = Math.log(graph[i][j]); } else { logGraph[i][j] = 0; } } } // Applying standard Prim's MST algorithm on // Log graph. primMST(graph logGraph); } // Driver code /* Let us create the following graph 2 3 (0)--(1)--(2) | / | 6| 8/ 5 |7 | / | (3)-------(4) 9 */ let graph = [ [ 0 2 0 6 0 ] [ 2 0 3 8 5 ] [ 0 3 0 0 7 ] [ 6 8 0 0 9 ] [ 0 5 7 9 0 ] ]; // Print the solution minimumProductMST(graph); // This code is contributed by rag2127 </script>
Izvade:
Edge Weight 0 - 1 2 1 - 2 3 0 - 3 6 1 - 4 5 Minimum Obtainable product is 180
The laika sarežģītība Šajā algoritmā ir O(V2), jo ir divas ligzdotas cilpas, kas atkārtojas visās virsotnēs.
The telpas sarežģītība Šis algoritms ir O(V2), jo mēs izmantojam 2-D masīvu ar izmēru V x V, lai saglabātu ievades grafiku.
bash stīgas garumsIzveidojiet viktorīnu