Dots masīvs arr[] izmēra N . Uzdevums ir atrast blakus esošā apakšgrupas summu a robežās arr[] ar lielāko summu.
Piemērs:
Ievade: arr = {-2,-3,4,-1,-2,1,5,-3}
Izvade: 7
Paskaidrojums: Apakšplānā {4,-1, -2, 1, 5} ir lielākā summa 7.Ievade: arr = {2}
Izvade: 2
Paskaidrojums: Apakšplūsmā {2} ir lielākā summa 1.Ievade: arr = {5,4,1,7,8}
Izvade: 25
Paskaidrojums: Apakšplānā {5,4,1,7,8} ir lielākā summa 25.
Ideja par Kadanes algoritms ir saglabāt mainīgo max_beigas_šeit kas saglabā maksimālo blakus esošo apakšgrupu summu, kas beidzas ar pašreizējo indeksu un mainīgo max_so_far saglabā līdz šim atrasto blakus esošo apakšgrupu maksimālo summu, katru reizi, kad ir pozitīva summas vērtība max_beigas_šeit salīdziniet to ar max_so_far un atjaunināt max_so_far ja tas ir lielāks par max_so_far .
Tātad galvenais Intuīcija aiz muguras Kadanes algoritms ir,
- Apakšbloks ar negatīvu summu tiek atmests ( kodā piešķirot max_ending_here = 0 ).
- Mēs veicam apakšgrupu, līdz tā dod pozitīvu summu.
Kadanes algoritma pseidokods:
Palaist:
max_so_far = INT_MIN
max_beigas_šeit = 0Cilpa katram masīva elementam
(a) max_beigas_šeit = max_beigas_šeit + a[i]
(b) if(max_so_far
max_so_far = max_beigas_šeit
(c) if(maks._beigas_šeit <0)
max_beigas_šeit = 0
atgriezties max_so_far
Kadanes algoritma ilustrācija:
Ņemsim piemēru: {-2, -3, 4, -1, -2, 1, 5, -3}
Piezīme : attēlā max_so_far ir attēlots ar Max_Sum un max_ending_here by Curr_Sum
Ja i=0, a[0] = -2
pirmais klēpjdators
- max_beigas_šeit = max_beigas_šeit + (-2)
- Iestatīt max_ending_here = 0, jo max_ending_here <0
- un iestatiet max_so_far = -2
Ja i=1, a[1] = -3
- max_beigas_šeit = max_beigas_šeit + (-3)
- Tā kā max_ending_here = -3 un max_so_far = -2, max_so_far paliks -2
- Iestatīt max_ending_here = 0, jo max_ending_here <0
Ja i=2, a[2] = 4
- max_beigas_šeit = max_beigas_šeit + (4)
- max_beigas_šeit = 4
- max_so_far ir atjaunināts uz 4, jo max_ending_here ir lielāks par max_so_far, kas līdz šim bija -2
Ja i=3, a[3] = -1
pārveidot virkni par int
- max_beigas_šeit = max_beigas_šeit + (-1)
- max_ending_here = 3
Ja i=4, a[4] = -2
- max_beigas_šeit = max_beigas_šeit + (-2)
- max_ending_here = 1
Ja i=5, a[5] = 1
- max_beigas_šeit = max_beigas_šeit + (1)
- max_beigas_šeit = 2
Ja i=6, a[6] = 5
- max_beigas_šeit = max_beigas_šeit + (5)
- max_ending_here =
- max_so_far ir atjaunināts uz 7, jo max_ending_here ir lielāks par max_so_far
Ja i=7, a[7] = -3
- max_beigas_šeit = max_beigas_šeit + (-3)
- max_beigas_šeit = 4
Lai īstenotu ideju, veiciet tālāk norādītās darbības.
- Inicializējiet mainīgos max_so_far = INT_MIN un max_beigas_šeit = 0
- Palaist for cilpu no 0 uz N-1 un katram indeksam i :
- Pievienojiet arr[i] uz max_ending_here.
- Ja max_so_far ir mazāks par max_ending_here, atjauniniet max_so_far to max_ending_here .
- Ja max_beigas_šeit <0, atjauniniet max_beigas_šeit = 0
- Atgriezt max_so_far
Zemāk ir aprakstīta iepriekš minētās pieejas īstenošana.
C++ // C++ program to print largest contiguous array sum #include using namespace std; int maxSubArraySum(int a[], int size) { int max_so_far = INT_MIN, max_ending_here = 0; for (int i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } // Driver Code int main() { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = sizeof(a) / sizeof(a[0]); // Function Call int max_sum = maxSubArraySum(a, n); cout << 'Maximum contiguous sum is ' << max_sum; return 0; }> Java // Java program to print largest contiguous array sum import java.io.*; import java.util.*; class Kadane { // Driver Code public static void main(String[] args) { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; System.out.println('Maximum contiguous sum is ' + maxSubArraySum(a)); } // Function Call static int maxSubArraySum(int a[]) { int size = a.length; int max_so_far = Integer.MIN_VALUE, max_ending_here = 0; for (int i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } }> Python def GFG(a, size): max_so_far = float('-inf') # Use float('-inf') instead of maxint max_ending_here = 0 for i in range(0, size): max_ending_here = max_ending_here + a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here if max_ending_here < 0: max_ending_here = 0 return max_so_far # Driver function to check the above function a = [-2, -3, 4, -1, -2, 1, 5, -3] print('Maximum contiguous sum is', GFG(a, len(a)))> C# // C# program to print largest // contiguous array sum using System; class GFG { static int maxSubArraySum(int[] a) { int size = a.Length; int max_so_far = int.MinValue, max_ending_here = 0; for (int i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } // Driver code public static void Main() { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; Console.Write('Maximum contiguous sum is ' + maxSubArraySum(a)); } } // This code is contributed by Sam007_> Javascript >>PHP>>
Izvade Maximum contiguous sum is 7>
Laika sarežģītība: O(N)
Palīgtelpa: O(1)
Drukāt lielākās summas blakus esošo apakšrindu:
Lai izdrukātu apakšgrupu ar maksimālo summu, ideja ir saglabāt sākt indekss no maksimālā_summa_beidzas_šeit pie pašreizējā indeksa, lai vienmēr maksimālā_summa_līdz šim ir atjaunināts ar maksimālā_summa_beidzas_šeit tad apakšgrupas sākuma indeksu un beigu indeksu var atjaunināt ar sākt un pašreizējais indekss .
Lai īstenotu ideju, veiciet tālāk norādītās darbības.
- Inicializējiet mainīgos s , sākt, un beigas ar 0 un max_so_far = INT_MIN un max_beigas_šeit = 0
- Palaist for cilpu no 0 uz N-1 un katram indeksam i :
- Pievienojiet arr[i] uz max_ending_here.
- Ja max_so_far ir mazāks par max_ending_here, atjauniniet max_so_far uz max_ending_šeit un atjauniniet sākt uz s un beigas uz i .
- Ja max_ending_here <0, tad atjauniniet max_ending_here = 0 un s ar i+1 .
- Drukājiet vērtības no indeksa sākt uz beigas .
Zemāk ir aprakstīta iepriekš minētās pieejas īstenošana:
C++ // C++ program to print largest contiguous array sum #include #include using namespace std; void maxSubArraySum(int a[], int size) { int max_so_far = INT_MIN, max_ending_here = 0, start = 0, end = 0, s = 0; for (int i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } cout << 'Maximum contiguous sum is ' << max_so_far << endl; cout << 'Starting index ' << start << endl << 'Ending index ' << end << endl; } /*Driver program to test maxSubArraySum*/ int main() { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = sizeof(a) / sizeof(a[0]); maxSubArraySum(a, n); return 0; }> Java // Java program to print largest // contiguous array sum import java.io.*; import java.util.*; class GFG { static void maxSubArraySum(int a[], int size) { int max_so_far = Integer.MIN_VALUE, max_ending_here = 0, start = 0, end = 0, s = 0; for (int i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } System.out.println('Maximum contiguous sum is ' + max_so_far); System.out.println('Starting index ' + start); System.out.println('Ending index ' + end); } // Driver code public static void main(String[] args) { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = a.length; maxSubArraySum(a, n); } } // This code is contributed by prerna saini> Python # Python program to print largest contiguous array sum from sys import maxsize # Function to find the maximum contiguous subarray # and print its starting and end index def maxSubArraySum(a, size): max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0, size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 print('Maximum contiguous sum is %d' % (max_so_far)) print('Starting Index %d' % (start)) print('Ending Index %d' % (end)) # Driver program to test maxSubArraySum a = [-2, -3, 4, -1, -2, 1, 5, -3] maxSubArraySum(a, len(a))> C# // C# program to print largest // contiguous array sum using System; class GFG { static void maxSubArraySum(int[] a, int size) { int max_so_far = int.MinValue, max_ending_here = 0, start = 0, end = 0, s = 0; for (int i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } Console.WriteLine('Maximum contiguous ' + 'sum is ' + max_so_far); Console.WriteLine('Starting index ' + start); Console.WriteLine('Ending index ' + end); } // Driver code public static void Main() { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = a.Length; maxSubArraySum(a, n); } } // This code is contributed // by anuj_67.> Javascript >>PHP>>
Izvade Laika sarežģītība: O(n)
Palīgtelpa: O(1) Lielākā summa blakus esošā apakšgrupa, izmantojot Dinamiskā programmēšana :
Katram indeksam i DP[i] saglabā maksimāli iespējamo lielāko kopējo blakus esošo apakšrindu, kas beidzas ar indeksu i, un tāpēc mēs varam aprēķināt DP[i], izmantojot minēto stāvokļa pāreju:
- DP[i] = maks (DP[i-1] + arr[i], arr[i])
Tālāk ir norādīta ieviešana:
C++ // C++ program to print largest contiguous array sum #include using namespace std; void maxSubArraySum(int a[], int size) { vector dp(izmērs, 0); dp[0] = a[0]; int ans = dp[0]; for (int i = 1; i< size; i++) { dp[i] = max(a[i], a[i] + dp[i - 1]); ans = max(ans, dp[i]); } cout << ans; } /*Driver program to test maxSubArraySum*/ int main() { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = sizeof(a) / sizeof(a[0]); maxSubArraySum(a, n); return 0; }> Java import java.util.Arrays; public class Main { // Function to find the largest contiguous array sum public static void maxSubArraySum(int[] a) { int size = a.length; int[] dp = new int[size]; // Create an array to store intermediate results dp[0] = a[0]; // Initialize the first element of the intermediate array with the first element of the input array int ans = dp[0]; // Initialize the answer with the first element of the intermediate array for (int i = 1; i < size; i++) { // Calculate the maximum of the current element and the sum of the current element and the previous result dp[i] = Math.max(a[i], a[i] + dp[i - 1]); // Update the answer with the maximum value encountered so far ans = Math.max(ans, dp[i]); } // Print the maximum contiguous array sum System.out.println(ans); } public static void main(String[] args) { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; maxSubArraySum(a); // Call the function to find and print the maximum contiguous array sum } } // This code is contributed by shivamgupta310570> Python # Python program for the above approach def max_sub_array_sum(a, size): # Create a list to store intermediate results dp = [0] * size # Initialize the first element of the list with the first element of the array dp[0] = a[0] # Initialize the answer with the first element of the array ans = dp[0] # Loop through the array starting from the second element for i in range(1, size): # Choose the maximum value between the current element and the sum of the current element # and the previous maximum sum (stored in dp[i - 1]) dp[i] = max(a[i], a[i] + dp[i - 1]) # Update the overall maximum sum ans = max(ans, dp[i]) # Print the maximum contiguous subarray sum print(ans) # Driver program to test max_sub_array_sum if __name__ == '__main__': # Sample array a = [-2, -3, 4, -1, -2, 1, 5, -3] # Get the length of the array n = len(a) # Call the function to find the maximum contiguous subarray sum max_sub_array_sum(a, n) # This code is contributed by Susobhan Akhuli>
C# using System; class MaxSubArraySum { // Function to find and print the maximum sum of a // subarray static void FindMaxSubArraySum(int[] arr, int size) { // Create an array to store the maximum sum of // subarrays int[] dp = new int[size]; // Initialize the first element of dp with the first // element of arr dp[0] = arr[0]; // Initialize a variable to store the final result int ans = dp[0]; // Iterate through the array to find the maximum sum for (int i = 1; i < size; i++) { // Calculate the maximum sum ending at the // current position dp[i] = Math.Max(arr[i], arr[i] + dp[i - 1]); // Update the final result with the maximum sum // found so far ans = Math.Max(ans, dp[i]); } // Print the maximum sum of the subarray Console.WriteLine(ans); } // Driver program to test FindMaxSubArraySum static void Main() { // Example array int[] arr = { -2, -3, 4, -1, -2, 1, 5, -3 }; // Calculate and print the maximum subarray sum FindMaxSubArraySum(arr, arr.Length); } }> Javascript // Javascript program to print largest contiguous array sum // Function to find the largest contiguous array sum function maxSubArraySum(a) { let size = a.length; // Create an array to store intermediate results let dp = new Array(size); // Initialize the first element of the intermediate array with the first element of the input array dp[0] = a[0]; // Initialize the answer with the first element of the intermediate array let ans = dp[0]; for (let i = 1; i < size; i++) { // Calculate the maximum of the current element and the sum of the current element and the previous result dp[i] = Math.max(a[i], a[i] + dp[i - 1]); // Update the answer with the maximum value encountered so far ans = Math.max(ans, dp[i]); } // Print the maximum contiguous array sum console.log(ans); } let a = [-2, -3, 4, -1, -2, 1, 5, -3]; // Call the function to find and print the maximum contiguous array sum maxSubArraySum(a);>
Izvade
Prakses problēma: Ņemot vērā veselu skaitļu masīvu (iespējams, daži elementi ir negatīvi), uzrakstiet C programmu, lai noskaidrotu *maksimālo reizinājumu*, kas ir iespējams, reizinot “n” secīgus veselus skaitļus masīvā, kur n ? ARRAY_SIZE. Izdrukājiet arī maksimālā produkta apakšgrupas sākumpunktu.