logo

C++ pārslodze (funkcija un operators)

Ja mēs izveidojam divus vai vairākus dalībniekus ar vienādu nosaukumu, bet atšķiras pēc skaita vai parametra veida, to sauc par C++ pārslodzi. Programmā C++ mēs varam pārslogot:

  • metodes,
  • konstruktori un
  • indeksētas īpašības

Tas ir tāpēc, ka šiem dalībniekiem ir tikai parametri.

C++ pārslodzes veidi ir:

  • Funkciju pārslodze
  • Operatora pārslodze
C++ pārslodze

C++ funkciju pārslodze

Funkciju pārslodze ir definēta kā process, kurā tiek izmantotas divas vai vairākas funkcijas ar vienādiem nosaukumiem, bet atšķirīgiem parametriem C++ valodā sauc par funkciju pārslodzi. Funkciju pārslodzes gadījumā funkcija tiek definēta no jauna, izmantojot dažādu veidu argumentus vai atšķirīgu argumentu skaitu. Tikai ar šīm atšķirībām kompilators var atšķirt funkcijas.

vai abstraktai klasei var būt konstruktors

The priekšrocība Funkciju pārslodze ir tāda, ka tā palielina programmas lasāmību, jo vienai un tai pašai darbībai nav jāizmanto dažādi nosaukumi.

C++ funkciju pārslodzes piemērs

Apskatīsim vienkāršu funkciju pārslodzes piemēru, kur mēs mainām add() metodes argumentu skaitu.

// funkciju pārslodzes programma, ja argumentu skaits mainās.

 #include using namespace std; class Cal { public: static int add(int a,int b){ return a + b; } static int add(int a, int b, int c) { return a + b + c; } }; int main(void) { Cal C; // class object declaration. cout&lt;<c.add(10, 20)<<endl; cout<<c.add(12, 20, 23); return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> 30 55 </pre> <p>Let&apos;s see the simple example when the type of the arguments vary.</p> <p>// Program of function overloading with different types of arguments.</p> <pre> #include using namespace std; int mul(int,int); float mul(float,int); int mul(int a,int b) { return a*b; } float mul(double x, int y) { return x*y; } int main() { int r1 = mul(6,7); float r2 = mul(0.2,3); std::cout &lt;&lt; &apos;r1 is : &apos; &lt;<r1<< std::endl; std::cout <<'r2 is : ' <<r2<< return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> r1 is : 42 r2 is : 0.6 </pre> <h2>Function Overloading and Ambiguity</h2> <p>When the compiler is unable to decide which function is to be invoked among the overloaded function, this situation is known as <strong>function overloading</strong> .</p> <p>When the compiler shows the ambiguity error, the compiler does not run the program.</p> <p> <strong>Causes of Function Overloading:</strong> </p> <ul> <li>Type Conversion.</li> <li>Function with default arguments.</li> <li>Function with pass by reference.</li> </ul> <img src="//techcodeview.com/img/c-tutorial/89/c-overloading-function-2.webp" alt="C++ Overloading"> <ul> <li>Type Conversion:</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(float); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(float j) { std::cout << 'value of j is : ' <<j<< int main() fun(12); fun(1.2); return 0; < pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(double)&apos; is ambiguous</strong> &apos;. The fun(10) will call the first function. The fun(1.2) calls the second function according to our prediction. But, this does not refer to any function as in C++, all the floating point constants are treated as double not as a float. If we replace float to double, the program works. Therefore, this is a type conversion from float to double.</p> <ul> <li>Function with Default Arguments</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(int,int); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(int a,int b="9)" { std::cout << 'value of a is : ' < <a<< <b<< int main() fun(12); return 0; pre> <p>The above example shows an error &apos;call of overloaded &apos;fun(int)&apos; is ambiguous&apos;. The fun(int a, int b=9) can be called in two ways: first is by calling the function with one argument, i.e., fun(12) and another way is calling the function with two arguments, i.e., fun(4,5). The fun(int i) function is invoked with one argument. Therefore, the compiler could not be able to select among fun(int i) and fun(int a,int b=9).</p> <ul> <li>Function with pass by reference</li> </ul> <p>Let&apos;s see a simple example.</p> <pre> #include using namespace std; void fun(int); void fun(int &amp;); int main() { int a=10; fun(a); // error, which f()? return 0; } void fun(int x) { std::cout &lt;&lt; &apos;Value of x is : &apos; &lt;<x<< std::endl; } void fun(int &b) { std::cout << 'value of b is : ' < <b<< pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(int&amp;)&apos; is ambiguous</strong> &apos;. The first function takes one integer argument and the second function takes a reference parameter as an argument. In this case, the compiler does not know which function is needed by the user as there is no syntactical difference between the fun(int) and fun(int &amp;).</p> <h2>C++ Operators Overloading</h2> <p>Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the special meaning to the user-defined data type. Operator overloading is used to overload or redefines most of the operators available in C++. It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to add the variables of the user-defined data type that is applied to the built-in data types.</p> <p>The advantage of Operators overloading is to perform different operations on the same operand.</p> <p> <strong>Operator that cannot be overloaded are as follows:</strong> </p> <ul> <li>Scope operator (::)</li> <li>Sizeof</li> <li>member selector(.)</li> <li>member pointer selector(*)</li> <li>ternary operator(?:) </li> </ul> <h2>Syntax of Operator Overloading</h2> <pre> return_type class_name : : operator op(argument_list) { // body of the function. } </pre> <p>Where the <strong>return type</strong> is the type of value returned by the function. </p><p> <strong>class_name</strong> is the name of the class.</p> <p> <strong>operator op</strong> is an operator function where op is the operator being overloaded, and the operator is the keyword.</p> <h2>Rules for Operator Overloading</h2> <ul> <li>Existing operators can only be overloaded, but the new operators cannot be overloaded.</li> <li>The overloaded operator contains atleast one operand of the user-defined data type.</li> <li>We cannot use friend function to overload certain operators. However, the member function can be used to overload those operators.</li> <li>When unary operators are overloaded through a member function take no explicit arguments, but, if they are overloaded by a friend function, takes one argument.</li> <li>When binary operators are overloaded through a member function takes one explicit argument, and if they are overloaded through a friend function takes two explicit arguments. </li> </ul> <h2>C++ Operators Overloading Example</h2> <p>Let&apos;s see the simple example of operator overloading in C++. In this example, void operator ++ () operator function is defined (inside Test class).</p> <p>// program to overload the unary operator ++.</p> <pre> #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<'the count is: '<<num; } }; int main() { test tt; ++tt; calling of a function 'void operator ++()' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<'the result of the addition two objects is : '<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></'the></pre></'the></pre></x<<></pre></i<<></pre></i<<></pre></r1<<></pre></c.add(10,>

Apskatīsim vienkāršu piemēru, kad argumentu veids atšķiras.

// Funkciju pārslodzes programma ar dažāda veida argumentiem.

 #include using namespace std; int mul(int,int); float mul(float,int); int mul(int a,int b) { return a*b; } float mul(double x, int y) { return x*y; } int main() { int r1 = mul(6,7); float r2 = mul(0.2,3); std::cout &lt;&lt; &apos;r1 is : &apos; &lt;<r1<< std::endl; std::cout <<\'r2 is : \' <<r2<< return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> r1 is : 42 r2 is : 0.6 </pre> <h2>Function Overloading and Ambiguity</h2> <p>When the compiler is unable to decide which function is to be invoked among the overloaded function, this situation is known as <strong>function overloading</strong> .</p> <p>When the compiler shows the ambiguity error, the compiler does not run the program.</p> <p> <strong>Causes of Function Overloading:</strong> </p> <ul> <li>Type Conversion.</li> <li>Function with default arguments.</li> <li>Function with pass by reference.</li> </ul> <img src="//techcodeview.com/img/c-tutorial/89/c-overloading-function-2.webp" alt="C++ Overloading"> <ul> <li>Type Conversion:</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(float); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(float j) { std::cout << \'value of j is : \' <<j<< int main() fun(12); fun(1.2); return 0; < pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(double)&apos; is ambiguous</strong> &apos;. The fun(10) will call the first function. The fun(1.2) calls the second function according to our prediction. But, this does not refer to any function as in C++, all the floating point constants are treated as double not as a float. If we replace float to double, the program works. Therefore, this is a type conversion from float to double.</p> <ul> <li>Function with Default Arguments</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(int,int); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(int a,int b="9)" { std::cout << \'value of a is : \' < <a<< <b<< int main() fun(12); return 0; pre> <p>The above example shows an error &apos;call of overloaded &apos;fun(int)&apos; is ambiguous&apos;. The fun(int a, int b=9) can be called in two ways: first is by calling the function with one argument, i.e., fun(12) and another way is calling the function with two arguments, i.e., fun(4,5). The fun(int i) function is invoked with one argument. Therefore, the compiler could not be able to select among fun(int i) and fun(int a,int b=9).</p> <ul> <li>Function with pass by reference</li> </ul> <p>Let&apos;s see a simple example.</p> <pre> #include using namespace std; void fun(int); void fun(int &amp;); int main() { int a=10; fun(a); // error, which f()? return 0; } void fun(int x) { std::cout &lt;&lt; &apos;Value of x is : &apos; &lt;<x<< std::endl; } void fun(int &b) { std::cout << \'value of b is : \' < <b<< pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(int&amp;)&apos; is ambiguous</strong> &apos;. The first function takes one integer argument and the second function takes a reference parameter as an argument. In this case, the compiler does not know which function is needed by the user as there is no syntactical difference between the fun(int) and fun(int &amp;).</p> <h2>C++ Operators Overloading</h2> <p>Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the special meaning to the user-defined data type. Operator overloading is used to overload or redefines most of the operators available in C++. It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to add the variables of the user-defined data type that is applied to the built-in data types.</p> <p>The advantage of Operators overloading is to perform different operations on the same operand.</p> <p> <strong>Operator that cannot be overloaded are as follows:</strong> </p> <ul> <li>Scope operator (::)</li> <li>Sizeof</li> <li>member selector(.)</li> <li>member pointer selector(*)</li> <li>ternary operator(?:) </li> </ul> <h2>Syntax of Operator Overloading</h2> <pre> return_type class_name : : operator op(argument_list) { // body of the function. } </pre> <p>Where the <strong>return type</strong> is the type of value returned by the function. </p><p> <strong>class_name</strong> is the name of the class.</p> <p> <strong>operator op</strong> is an operator function where op is the operator being overloaded, and the operator is the keyword.</p> <h2>Rules for Operator Overloading</h2> <ul> <li>Existing operators can only be overloaded, but the new operators cannot be overloaded.</li> <li>The overloaded operator contains atleast one operand of the user-defined data type.</li> <li>We cannot use friend function to overload certain operators. However, the member function can be used to overload those operators.</li> <li>When unary operators are overloaded through a member function take no explicit arguments, but, if they are overloaded by a friend function, takes one argument.</li> <li>When binary operators are overloaded through a member function takes one explicit argument, and if they are overloaded through a friend function takes two explicit arguments. </li> </ul> <h2>C++ Operators Overloading Example</h2> <p>Let&apos;s see the simple example of operator overloading in C++. In this example, void operator ++ () operator function is defined (inside Test class).</p> <p>// program to overload the unary operator ++.</p> <pre> #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<\'the count is: \'<<num; } }; int main() { test tt; ++tt; calling of a function \'void operator ++()\' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\'the result of the addition two objects is : \'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\'the></pre></\'the></pre></x<<></pre></i<<></pre></i<<></pre></r1<<>

Funkciju pārslodze un neskaidrība

Ja kompilators nevar izlemt, kura funkcija ir jāizsauc starp pārslogotajām funkcijām, šo situāciju sauc par funkciju pārslodze .

Kad kompilators parāda neskaidrības kļūdu, kompilators nepalaiž programmu.

Funkciju pārslodzes cēloņi:

  • Veids Conversion.
  • Funkcija ar noklusējuma argumentiem.
  • Funkcija ar norādi pēc atsauces.
C++ pārslodze
  • Pārveidošanas veids:

Apskatīsim vienkāršu piemēru.

 #include using namespace std; void fun(int); void fun(float); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(float j) { std::cout << \'value of j is : \' <<j<< int main() fun(12); fun(1.2); return 0; < pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(double)&apos; is ambiguous</strong> &apos;. The fun(10) will call the first function. The fun(1.2) calls the second function according to our prediction. But, this does not refer to any function as in C++, all the floating point constants are treated as double not as a float. If we replace float to double, the program works. Therefore, this is a type conversion from float to double.</p> <ul> <li>Function with Default Arguments</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(int,int); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(int a,int b="9)" { std::cout << \'value of a is : \' < <a<< <b<< int main() fun(12); return 0; pre> <p>The above example shows an error &apos;call of overloaded &apos;fun(int)&apos; is ambiguous&apos;. The fun(int a, int b=9) can be called in two ways: first is by calling the function with one argument, i.e., fun(12) and another way is calling the function with two arguments, i.e., fun(4,5). The fun(int i) function is invoked with one argument. Therefore, the compiler could not be able to select among fun(int i) and fun(int a,int b=9).</p> <ul> <li>Function with pass by reference</li> </ul> <p>Let&apos;s see a simple example.</p> <pre> #include using namespace std; void fun(int); void fun(int &amp;); int main() { int a=10; fun(a); // error, which f()? return 0; } void fun(int x) { std::cout &lt;&lt; &apos;Value of x is : &apos; &lt;<x<< std::endl; } void fun(int &b) { std::cout << \'value of b is : \' < <b<< pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(int&amp;)&apos; is ambiguous</strong> &apos;. The first function takes one integer argument and the second function takes a reference parameter as an argument. In this case, the compiler does not know which function is needed by the user as there is no syntactical difference between the fun(int) and fun(int &amp;).</p> <h2>C++ Operators Overloading</h2> <p>Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the special meaning to the user-defined data type. Operator overloading is used to overload or redefines most of the operators available in C++. It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to add the variables of the user-defined data type that is applied to the built-in data types.</p> <p>The advantage of Operators overloading is to perform different operations on the same operand.</p> <p> <strong>Operator that cannot be overloaded are as follows:</strong> </p> <ul> <li>Scope operator (::)</li> <li>Sizeof</li> <li>member selector(.)</li> <li>member pointer selector(*)</li> <li>ternary operator(?:) </li> </ul> <h2>Syntax of Operator Overloading</h2> <pre> return_type class_name : : operator op(argument_list) { // body of the function. } </pre> <p>Where the <strong>return type</strong> is the type of value returned by the function. </p><p> <strong>class_name</strong> is the name of the class.</p> <p> <strong>operator op</strong> is an operator function where op is the operator being overloaded, and the operator is the keyword.</p> <h2>Rules for Operator Overloading</h2> <ul> <li>Existing operators can only be overloaded, but the new operators cannot be overloaded.</li> <li>The overloaded operator contains atleast one operand of the user-defined data type.</li> <li>We cannot use friend function to overload certain operators. However, the member function can be used to overload those operators.</li> <li>When unary operators are overloaded through a member function take no explicit arguments, but, if they are overloaded by a friend function, takes one argument.</li> <li>When binary operators are overloaded through a member function takes one explicit argument, and if they are overloaded through a friend function takes two explicit arguments. </li> </ul> <h2>C++ Operators Overloading Example</h2> <p>Let&apos;s see the simple example of operator overloading in C++. In this example, void operator ++ () operator function is defined (inside Test class).</p> <p>// program to overload the unary operator ++.</p> <pre> #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<\'the count is: \'<<num; } }; int main() { test tt; ++tt; calling of a function \'void operator ++()\' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\'the result of the addition two objects is : \'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\'the></pre></\'the></pre></x<<></pre></i<<></pre></i<<>

Kur atgriešanas veids ir funkcijas atgrieztās vērtības veids.

klases_nosaukums ir klases nosaukums.

operators op ir operatora funkcija, kur op ir operators, kas tiek pārslogots, un operators ir atslēgvārds.

Operatora pārslodzes noteikumi

  • Esošos operatorus var tikai pārslogot, bet jaunos operatorus nevar pārslogot.
  • Pārslogotajā operatorā ir vismaz viens lietotāja definēta datu tipa operands.
  • Mēs nevaram izmantot drauga funkciju, lai pārslogotu noteiktus operatorus. Tomēr dalībnieka funkciju var izmantot, lai pārslogotu šos operatorus.
  • Ja unārie operatori ir pārslogoti, izmantojot dalībnieka funkciju, neizmanto skaidrus argumentus, bet, ja tos pārslogo drauga funkcija, tiek izmantots viens arguments.
  • Ja binārie operatori ir pārslogoti, izmantojot dalībnieka funkciju, tiek izmantots viens tiešs arguments, un, ja tie ir pārslogoti, izmantojot funkciju draugs, tiek izmantoti divi skaidri argumenti.

C++ operatoru pārslodzes piemērs

Apskatīsim vienkāršu operatora pārslodzes piemēru C++. Šajā piemērā ir definēta operatora funkcija tukšums ++ () (pārbaudes klasē).

// programma vienkāršā operatora pārslodzei ++.

 #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<\\'the count is: \\'<<num; } }; int main() { test tt; ++tt; calling of a function \\'void operator ++()\\' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\\'the result of the addition two objects is : \\'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\\'the></pre></\\'the>

Apskatīsim vienkāršu bināro operatoru pārslodzes piemēru.

// programma bināro operatoru pārslodzei.

 #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\\'the result of the addition two objects is : \\'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\\'the>