logo

Koku šķirošana

Koku šķirošana ir šķirošanas algoritms, kura pamatā ir Binārais meklēšanas koks datu struktūra. Vispirms tas izveido bināro meklēšanas koku no ievades saraksta vai masīva elementiem un pēc tam veic izveidotā binārā meklēšanas koka šķērsošanu secībā, lai elementi tiktu sakārtoti sakārtotā secībā. 

Algoritms:  

    1. darbība:Paņemiet masīvā ievadītos elementus.2. darbība:Izveidojiet bināro meklēšanas koku, ievietojot datu vienumus no masīva binārā meklēšanas koks .3. darbība:Veiciet koka pārvietošanu secībā, lai elementi būtu sakārtoti.

Koku šķirošanas pielietojumi:

  • To visbiežāk izmanto elementu rediģēšanai tiešsaistē: pēc katras instalēšanas strukturētā programmā ir pieejams līdz šim redzēto objektu kopums.
  • Ja kā bināro meklēšanas koku izmantojat atvēršanas koku, iegūtajam algoritmam (sauktam par splaysort) ir papildu īpašība, proti, tā ir adaptīvā kārtošana, kas nozīmē, ka tā darba laiks ir ātrāks par O (n log n) virtuālajiem ievadiem.

Tālāk ir norādīta iepriekš minētās pieejas īstenošana.



C++
// C++ program to implement Tree Sort #include   using namespace std; struct Node {  int key;  struct Node *left *right; }; // A utility function to create a new BST Node struct Node *newNode(int item) {  struct Node *temp = new Node;  temp->key = item;  temp->left = temp->right = NULL;  return temp; } // Stores inorder traversal of the BST // in arr[] void storeSorted(Node *root int arr[] int &i) {  if (root != NULL)  {  storeSorted(root->left arr i);  arr[i++] = root->key;  storeSorted(root->right arr i);  } } /* A utility function to insert a new  Node with given key in BST */ Node* insert(Node* node int key) {  /* If the tree is empty return a new Node */  if (node == NULL) return newNode(key);  /* Otherwise recur down the tree */  if (key < node->key)  node->left = insert(node->left key);  else if (key > node->key)  node->right = insert(node->right key);  /* return the (unchanged) Node pointer */  return node; } // This function sorts arr[0..n-1] using Tree Sort void treeSort(int arr[] int n) {  struct Node *root = NULL;  // Construct the BST  root = insert(root arr[0]);  for (int i=1; i<n; i++)  root = insert(root arr[i]);  // Store inorder traversal of the BST  // in arr[]  int i = 0;  storeSorted(root arr i); } // Driver Program to test above functions int main() {  //create input array  int arr[] = {5 4 7 2 11};  int n = sizeof(arr)/sizeof(arr[0]);  treeSort(arr n);  for (int i=0; i<n; i++)  cout << arr[i] << ' ';  return 0; } 
Java
// Java program to  // implement Tree Sort class GFG  {  // Class containing left and  // right child of current   // node and key value  class Node   {  int key;  Node left right;  public Node(int item)   {  key = item;  left = right = null;  }  }  // Root of BST  Node root;  // Constructor  GFG()   {   root = null;   }  // This method mainly  // calls insertRec()  void insert(int key)  {  root = insertRec(root key);  }    /* A recursive function to   insert a new key in BST */  Node insertRec(Node root int key)   {  /* If the tree is empty  return a new node */  if (root == null)   {  root = new Node(key);  return root;  }  /* Otherwise recur  down the tree */  if (key < root.key)  root.left = insertRec(root.left key);  else if (key > root.key)  root.right = insertRec(root.right key);  /* return the root */  return root;  }    // A function to do   // inorder traversal of BST  void inorderRec(Node root)   {  if (root != null)   {  inorderRec(root.left);  System.out.print(root.key + ' ');  inorderRec(root.right);  }  }  void treeins(int arr[])  {  for(int i = 0; i < arr.length; i++)  {  insert(arr[i]);  }    }  // Driver Code  public static void main(String[] args)   {  GFG tree = new GFG();  int arr[] = {5 4 7 2 11};  tree.treeins(arr);  tree.inorderRec(tree.root);  } } // This code is contributed // by Vibin M 
Python3
# Python3 program to  # implement Tree Sort # Class containing left and # right child of current  # node and key value class Node: def __init__(selfitem = 0): self.key = item self.leftself.right = NoneNone # Root of BST root = Node() root = None # This method mainly # calls insertRec() def insert(key): global root root = insertRec(root key) # A recursive function to  # insert a new key in BST def insertRec(root key): # If the tree is empty # return a new node if (root == None): root = Node(key) return root # Otherwise recur # down the tree  if (key < root.key): root.left = insertRec(root.left key) elif (key > root.key): root.right = insertRec(root.right key) # return the root return root # A function to do  # inorder traversal of BST def inorderRec(root): if (root != None): inorderRec(root.left) print(root.key end = ' ') inorderRec(root.right) def treeins(arr): for i in range(len(arr)): insert(arr[i]) # Driver Code arr = [5 4 7 2 11] treeins(arr) inorderRec(root) # This code is contributed by shinjanpatra 
C#
// C# program to  // implement Tree Sort using System; public class GFG  {  // Class containing left and  // right child of current   // node and key value  public class Node   {  public int key;  public Node left right;  public Node(int item)   {  key = item;  left = right = null;  }  }  // Root of BST  Node root;  // Constructor  GFG()   {   root = null;   }  // This method mainly  // calls insertRec()  void insert(int key)  {  root = insertRec(root key);  }  /* A recursive function to   insert a new key in BST */  Node insertRec(Node root int key)   {  /* If the tree is empty  return a new node */  if (root == null)   {  root = new Node(key);  return root;  }  /* Otherwise recur  down the tree */  if (key < root.key)  root.left = insertRec(root.left key);  else if (key > root.key)  root.right = insertRec(root.right key);  /* return the root */  return root;  }  // A function to do   // inorder traversal of BST  void inorderRec(Node root)   {  if (root != null)   {  inorderRec(root.left);  Console.Write(root.key + ' ');  inorderRec(root.right);  }  }  void treeins(int []arr)  {  for(int i = 0; i < arr.Length; i++)  {  insert(arr[i]);  }  }  // Driver Code  public static void Main(String[] args)   {  GFG tree = new GFG();  int []arr = {5 4 7 2 11};  tree.treeins(arr);  tree.inorderRec(tree.root);  } } // This code is contributed by Rajput-Ji  
JavaScript
<script> // Javascript program to  // implement Tree Sort // Class containing left and // right child of current  // node and key value class Node {  constructor(item) {  this.key = item;  this.left = this.right = null;  } } // Root of BST let root = new Node(); root = null; // This method mainly // calls insertRec() function insert(key) {  root = insertRec(root key); } /* A recursive function to  insert a new key in BST */ function insertRec(root key) {  /* If the tree is empty  return a new node */  if (root == null) {  root = new Node(key);  return root;  }  /* Otherwise recur  down the tree */  if (key < root.key)  root.left = insertRec(root.left key);  else if (key > root.key)  root.right = insertRec(root.right key);  /* return the root */  return root; } // A function to do  // inorder traversal of BST function inorderRec(root) {  if (root != null) {  inorderRec(root.left);  document.write(root.key + ' ');  inorderRec(root.right);  } } function treeins(arr) {  for (let i = 0; i < arr.length; i++) {  insert(arr[i]);  } } // Driver Code let arr = [5 4 7 2 11]; treeins(arr); inorderRec(root); // This code is contributed // by Saurabh Jaiswal </script> 

Izvade
2 4 5 7 11 

Sarežģītības analīze:

Vidējais lietas laika sarežģītība: O(n log n) Viena vienuma pievienošana binārās meklēšanas kokam vidēji aizņem O(log n) laiku. Tāpēc n vienumu pievienošana prasīs O(n log n) laiku

Sliktākā gadījuma laika sarežģītība: O(n2). Tree Sort sarežģītību vissliktākajā gadījumā var uzlabot, izmantojot pašbalansējošu bināro meklēšanas koku, piemēram, Red Black Tree AVL Tree. Izmantojot pašbalansējošu bināro koku Tree Sort, sliktākajā gadījumā masīva kārtošanai būs nepieciešams O(n log n) laiks. 

Palīgtelpa: O(n)