logo

Vītņots binārais koks | Ievietošana

Mēs jau esam apsprieduši Binārais vītņots binārais koks .
Ievietošana binārajā kokā ir līdzīga ievietošanai binārajā kokā, taču mums būs jāpielāgo pavedieni pēc katra elementa ievietošanas.

Binārā vītņota mezgla C attēlojums: 

struct Node { struct Node *left *right; int info; // false if left pointer points to predecessor // in Inorder Traversal boolean lthread; // false if right pointer points to successor // in Inorder Traversal boolean rthread; };

Nākamajā skaidrojumā mēs esam apsvēruši Binārais meklēšanas koks (BST) ievietošanai, jo ievietošanu nosaka daži noteikumi BST.
Ļaujiet tmp ir tikko ievietotais mezgls . Ievietošanas laikā var būt trīs gadījumi:



1. gadījums: ievietošana tukšā kokā  

Gan kreisais, gan labais tmp rādītājs tiks iestatīts uz NULL, un jaunais mezgls kļūst par sakni. 

string.compareto c#
root = tmp; tmp -> left = NULL; tmp -> right = NULL;

2. gadījums: kad jauns mezgls ir ievietots kā kreisais bērns  

Pēc mezgla ievietošanas tā pareizajā vietā mums ir jānorāda, ka tā kreisais un labais pavediens norāda attiecīgi uz priekšgājēju un pēcteci. Mezgls, kas bija rīkojuma pēctecis . Tātad jaunā mezgla kreisais un labais pavediens būs- 

nedeterminēti galīgi automāti
tmp -> left = par ->left; tmp -> right = par;

Pirms ievietošanas kreisais vecāka rādītājs bija pavediens, bet pēc ievietošanas tā būs saite, kas norāda uz jauno mezglu. 

par -> lthread = false; par -> left = temp;

Nākamajā piemērā ir parādīts, ka mezgls tiek ievietots kā vecāka kreisais bērns. 
 

Vītņots binārais koks | Ievietošana


Pēc 13. ievietošanas 
 

Vītņots binārais koks | Ievietošana


14 priekštecis kļūst par 13 priekšteci, tātad kreisais pavediens no 13 punktiem pret 10. 
13 pēctecis ir 14, tātad labais pavediens no 13 punktiem pret kreiso bērnu, kas ir 13. 
Kreisais rādītājs 14 nav pavediens, tagad tas norāda uz kreiso bērnu, kas ir 13.

alfabēts pēc skaitļa

3. gadījums: kad jauns mezgls tiek ievietots kā pareizais bērns  

Tmp vecākais ir tā priekšgājējs. Mezgls, kas bija vecākelementa kārtas pēctecis, tagad ir šī mezgla tmp kārtas pēctecis. Tātad jaunā mezgla kreisais un labais pavediens būs- 

tmp -> left = par; tmp -> right = par -> right;

Pirms ievietošanas vecākais labais rādītājs bija pavediens, bet pēc ievietošanas tā būs saite, kas norāda uz jauno mezglu. 

par -> rthread = false; par -> right = tmp;

Nākamajā piemērā ir parādīts, ka mezgls tiek ievietots kā tā vecāka pareizais bērns. 
 

Vītņots binārais koks | Ievietošana


Pēc 15 ievietota 
 

bash lasīšanas fails

Vītņots binārais koks | Ievietošana


14 pēctecis kļūst par 15 pēcteci, tātad pareizais pavediens no 15 punktiem līdz 16 
15 priekštecis ir 14, tātad kreisais pavediens no 15 punktiem līdz 14. 
Labais rādītājs 14 nav pavediens, tagad tas norāda uz labo bērnu, kuram ir 15.

C++ ieviešana, lai ievietotu jaunu mezglu Threaded Binary Search Tree:  
Patīk standarta BST ieliktnis kokā meklējam galveno vērtību. Ja atslēga jau ir, mēs atgriežam, pretējā gadījumā jaunā atslēga tiek ievietota vietā, kur beidzas meklēšana. BST meklēšana beidzas, kad atrodam atslēgu, vai arī tad, kad sasniedzam NULL kreiso vai labo rādītāju. Šeit visas kreisās un labās NULL norādes tiek aizstātas ar pavedieniem, izņemot pirmā mezgla kreiso rādītāju un pēdējā mezgla labo rādītāju. Tātad šeit meklēšana būs neveiksmīga, kad sasniegsim NULL rādītāju vai pavedienu.

Android tālruņa iestatījumu izvēlne

Īstenošana:

C++
// Insertion in Threaded Binary Search Tree. #include   using namespace std; struct Node {  struct Node *left *right;  int info;  // False if left pointer points to predecessor  // in Inorder Traversal  bool lthread;  // False if right pointer points to successor  // in Inorder Traversal  bool rthread; }; // Insert a Node in Binary Threaded Tree struct Node *insert(struct Node *root int ikey) {  // Searching for a Node with given value  Node *ptr = root;  Node *par = NULL; // Parent of key to be inserted  while (ptr != NULL)  {  // If key already exists return  if (ikey == (ptr->info))  {  printf('Duplicate Key !n');  return root;  }  par = ptr; // Update parent pointer  // Moving on left subtree.  if (ikey < ptr->info)  {  if (ptr -> lthread == false)  ptr = ptr -> left;  else  break;  }  // Moving on right subtree.  else  {  if (ptr->rthread == false)  ptr = ptr -> right;  else  break;  }  }  // Create a new node  Node *tmp = new Node;  tmp -> info = ikey;  tmp -> lthread = true;  tmp -> rthread = true;  if (par == NULL)  {  root = tmp;  tmp -> left = NULL;  tmp -> right = NULL;  }  else if (ikey < (par -> info))  {  tmp -> left = par -> left;  tmp -> right = par;  par -> lthread = false;  par -> left = tmp;  }  else  {  tmp -> left = par;  tmp -> right = par -> right;  par -> rthread = false;  par -> right = tmp;  }  return root; } // Returns inorder successor using rthread struct Node *inorderSuccessor(struct Node *ptr) {  // If rthread is set we can quickly find  if (ptr -> rthread == true)  return ptr->right;  // Else return leftmost child of right subtree  ptr = ptr -> right;  while (ptr -> lthread == false)  ptr = ptr -> left;  return ptr; } // Printing the threaded tree void inorder(struct Node *root) {  if (root == NULL)  printf('Tree is empty');  // Reach leftmost node  struct Node *ptr = root;  while (ptr -> lthread == false)  ptr = ptr -> left;  // One by one print successors  while (ptr != NULL)  {  printf('%d 'ptr -> info);  ptr = inorderSuccessor(ptr);  } } // Driver Program int main() {  struct Node *root = NULL;  root = insert(root 20);  root = insert(root 10);  root = insert(root 30);  root = insert(root 5);  root = insert(root 16);  root = insert(root 14);  root = insert(root 17);  root = insert(root 13);  inorder(root);  return 0; } 
Java
// Java program Insertion in Threaded Binary Search Tree.  import java.util.*; public class solution { static class Node  {   Node left right;   int info;     // False if left pointer points to predecessor   // in Inorder Traversal   boolean lthread;     // False if right pointer points to successor   // in Inorder Traversal   boolean rthread;  };    // Insert a Node in Binary Threaded Tree  static Node insert( Node root int ikey)  {   // Searching for a Node with given value   Node ptr = root;   Node par = null; // Parent of key to be inserted   while (ptr != null)   {   // If key already exists return   if (ikey == (ptr.info))   {   System.out.printf('Duplicate Key !n');   return root;   }     par = ptr; // Update parent pointer     // Moving on left subtree.   if (ikey < ptr.info)   {   if (ptr . lthread == false)   ptr = ptr . left;   else  break;   }     // Moving on right subtree.   else  {   if (ptr.rthread == false)   ptr = ptr . right;   else  break;   }   }     // Create a new node   Node tmp = new Node();   tmp . info = ikey;   tmp . lthread = true;   tmp . rthread = true;     if (par == null)   {   root = tmp;   tmp . left = null;   tmp . right = null;   }   else if (ikey < (par . info))   {   tmp . left = par . left;   tmp . right = par;   par . lthread = false;   par . left = tmp;   }   else  {   tmp . left = par;   tmp . right = par . right;   par . rthread = false;   par . right = tmp;   }     return root;  }    // Returns inorder successor using rthread  static Node inorderSuccessor( Node ptr)  {   // If rthread is set we can quickly find   if (ptr . rthread == true)   return ptr.right;     // Else return leftmost child of right subtree   ptr = ptr . right;   while (ptr . lthread == false)   ptr = ptr . left;   return ptr;  }    // Printing the threaded tree  static void inorder( Node root)  {   if (root == null)   System.out.printf('Tree is empty');     // Reach leftmost node   Node ptr = root;   while (ptr . lthread == false)   ptr = ptr . left;     // One by one print successors   while (ptr != null)   {   System.out.printf('%d 'ptr . info);   ptr = inorderSuccessor(ptr);   }  }    // Driver Program  public static void main(String[] args) {   Node root = null;     root = insert(root 20);   root = insert(root 10);   root = insert(root 30);   root = insert(root 5);   root = insert(root 16);   root = insert(root 14);   root = insert(root 17);   root = insert(root 13);     inorder(root);  }  } //contributed by Arnab Kundu // This code is updated By Susobhan Akhuli 
Python3
# Insertion in Threaded Binary Search Tree.  class newNode: def __init__(self key): # False if left pointer points to  # predecessor in Inorder Traversal  self.info = key self.left = None self.right =None self.lthread = True # False if right pointer points to  # successor in Inorder Traversal  self.rthread = True # Insert a Node in Binary Threaded Tree  def insert(root ikey): # Searching for a Node with given value  ptr = root par = None # Parent of key to be inserted  while ptr != None: # If key already exists return  if ikey == (ptr.info): print('Duplicate Key !') return root par = ptr # Update parent pointer  # Moving on left subtree.  if ikey < ptr.info: if ptr.lthread == False: ptr = ptr.left else: break # Moving on right subtree.  else: if ptr.rthread == False: ptr = ptr.right else: break # Create a new node  tmp = newNode(ikey) if par == None: root = tmp tmp.left = None tmp.right = None elif ikey < (par.info): tmp.left = par.left tmp.right = par par.lthread = False par.left = tmp else: tmp.left = par tmp.right = par.right par.rthread = False par.right = tmp return root # Returns inorder successor using rthread  def inorderSuccessor(ptr): # If rthread is set we can quickly find  if ptr.rthread == True: return ptr.right # Else return leftmost child of  # right subtree  ptr = ptr.right while ptr.lthread == False: ptr = ptr.left return ptr # Printing the threaded tree  def inorder(root): if root == None: print('Tree is empty') # Reach leftmost node  ptr = root while ptr.lthread == False: ptr = ptr.left # One by one print successors  while ptr != None: print(ptr.infoend=' ') ptr = inorderSuccessor(ptr) # Driver Code if __name__ == '__main__': root = None root = insert(root 20) root = insert(root 10) root = insert(root 30) root = insert(root 5) root = insert(root 16) root = insert(root 14) root = insert(root 17) root = insert(root 13) inorder(root) # This code is contributed by PranchalK 
C#
using System; // C# program Insertion in Threaded Binary Search Tree.  public class solution { public class Node {  public Node left right;  public int info;  // False if left pointer points to predecessor   // in Inorder Traversal   public bool lthread;  // False if right pointer points to successor   // in Inorder Traversal   public bool rthread; } // Insert a Node in Binary Threaded Tree  public static Node insert(Node root int ikey) {  // Searching for a Node with given value   Node ptr = root;  Node par = null; // Parent of key to be inserted  while (ptr != null)  {  // If key already exists return   if (ikey == (ptr.info))  {  Console.Write('Duplicate Key !n');  return root;  }  par = ptr; // Update parent pointer  // Moving on left subtree.   if (ikey < ptr.info)  {  if (ptr.lthread == false)  {  ptr = ptr.left;  }  else  {  break;  }  }  // Moving on right subtree.   else  {  if (ptr.rthread == false)  {  ptr = ptr.right;  }  else  {  break;  }  }  }  // Create a new node   Node tmp = new Node();  tmp.info = ikey;  tmp.lthread = true;  tmp.rthread = true;  if (par == null)  {  root = tmp;  tmp.left = null;  tmp.right = null;  }  else if (ikey < (par.info))  {  tmp.left = par.left;  tmp.right = par;  par.lthread = false;  par.left = tmp;  }  else  {  tmp.left = par;  tmp.right = par.right;  par.rthread = false;  par.right = tmp;  }  return root; } // Returns inorder successor using rthread  public static Node inorderSuccessor(Node ptr) {  // If rthread is set we can quickly find   if (ptr.rthread == true)  {  return ptr.right;  }  // Else return leftmost child of right subtree   ptr = ptr.right;  while (ptr.lthread == false)  {  ptr = ptr.left;  }  return ptr; } // Printing the threaded tree  public static void inorder(Node root) {  if (root == null)  {  Console.Write('Tree is empty');  }  // Reach leftmost node   Node ptr = root;  while (ptr.lthread == false)  {  ptr = ptr.left;  }  // One by one print successors   while (ptr != null)  {  Console.Write('{0:D} 'ptr.info);  ptr = inorderSuccessor(ptr);  } } // Driver Program  public static void Main(string[] args) {  Node root = null;  root = insert(root 20);  root = insert(root 10);  root = insert(root 30);  root = insert(root 5);  root = insert(root 16);  root = insert(root 14);  root = insert(root 17);  root = insert(root 13);  inorder(root); } }  // This code is contributed by Shrikant13 
JavaScript
<script> // javascript program Insertion in Threaded Binary Search Tree.   class Node {  constructor(){ this.left = null this.right = null;  this.info = 0;  // False if left pointer points to predecessor  // in Inorder Traversal  this.lthread = false;  // False if right pointer points to successor  // in Inorder Traversal  this.rthread = false;  }  }  // Insert a Node in Binary Threaded Tree  function insert(root  ikey) {  // Searching for a Node with given value var ptr = root; var par = null; // Parent of key to be inserted  while (ptr != null) {  // If key already exists return  if (ikey == (ptr.info)) {  document.write('Duplicate Key !n');  return root;  }  par = ptr; // Update parent pointer  // Moving on left subtree.  if (ikey < ptr.info) {  if (ptr.lthread == false)  ptr = ptr.left;  else  break;  }  // Moving on right subtree.  else {  if (ptr.rthread == false)  ptr = ptr.right;  else  break;  }  }  // Create a new node var tmp = new Node();  tmp.info = ikey;  tmp.lthread = true;  tmp.rthread = true;  if (par == null) {  root = tmp;  tmp.left = null;  tmp.right = null;  } else if (ikey < (par.info)) {  tmp.left = par.left;  tmp.right = par;  par.lthread = false;  par.left = tmp;  } else {  tmp.left = par;  tmp.right = par.right;  par.rthread = false;  par.right = tmp;  }  return root;  }  // Returns inorder successor using rthread  function inorderSuccessor(ptr) {  // If rthread is set we can quickly find  if (ptr.rthread == true)  return ptr.right;  // Else return leftmost child of right subtree  ptr = ptr.right;  while (ptr.lthread == false)  ptr = ptr.left;  return ptr;  }  // Printing the threaded tree  function inorder(root) {  if (root == null)  document.write('Tree is empty');  // Reach leftmost node var ptr = root;  while (ptr.lthread == false)  ptr = ptr.left;  // One by one print successors  while (ptr != null) {  document.write(ptr.info+' ');  ptr = inorderSuccessor(ptr);  }  }  // Driver Program   var root = null;  root = insert(root 20);  root = insert(root 10);  root = insert(root 30);  root = insert(root 5);  root = insert(root 16);  root = insert(root 14);  root = insert(root 17);  root = insert(root 13);  inorder(root); // This code contributed by aashish1995 </script> 

Izvade
5 10 13 14 16 17 20 30 

Laika sarežģītība: O(log N)

Telpas sarežģītība: O(1) jo nav izmantota papildu vieta.

 

Izveidojiet viktorīnu