#practiceLinkDiv { display: none !important; }Dots pozitīvu veselu skaitļu masīvs, nomainiet katru masīva elementu tā, lai starpība starp blakus esošajiem elementiem masīvā būtu mazāka vai vienāda ar doto mērķi. Mums ir jāsamazina pielāgošanas izmaksas, kas ir jauno un veco vērtību atšķirību summa. Būtībā mums ir jāsamazina ?|A[i]-Ajauns[i]| kur 0? es ? n-1 n ir A[] un A lielumsjauns[] ir masīvs ar blakus esošo starpību, kas ir mazāka vai vienāda ar mērķi. Pieņemsim, ka visi masīva elementi ir mazāki par konstanti M = 100.
Piemēri:
Input: arr = [1 3 0 3] target = 1Recommended Practice Atrodiet masīva minimālās pielāgošanas izmaksas Izmēģiniet to!
Output: Minimum adjustment cost is 3
Explanation: One of the possible solutions
is [2 3 2 3]
Input: arr = [2 3 2 3] target = 1
Output: Minimum adjustment cost is 0
Explanation: All adjacent elements in the input
array are already less than equal to given target
Input: arr = [55 77 52 61 39 6
25 60 49 47] target = 10
Output: Minimum adjustment cost is 75
Explanation: One of the possible solutions is
[55 62 52 49 39 29 30 40 49 47]
Lai samazinātu korekcijas izmaksas ?|A[i]–Ajauns[i]| visam indeksam i masīvā |A[i] - Ajauns[i]| jābūt pēc iespējas tuvāk nullei. Arī |A[i] - Ajauns[i+1] ]| ? Mērķis.
Šo problēmu var atrisināt ar dinamiskā programmēšana .
Ļaujiet dp[i][j] definēt minimālās pielāgošanas izmaksas, mainot A[i] uz j, tad DP attiecību nosaka -
dp[i][j] = min{dp[i - 1][k]} + |j - A[i]|
for all k's such that |k - j| ? target
Šeit 0? es ? n un 0? j ? M kur n ir elementu skaits masīvā un M = 100. Mums ir jāņem vērā visi k tādi, lai max(j - target 0) ? k ? min (M j + mērķis)
Visbeidzot masīva minimālās pielāgošanas izmaksas būs min{dp[n - 1][j]} visiem 0 ? j ? M.
Algoritms:
- Izveidojiet 2D masīvu ar inicializācijām dp[n][M+1], lai reģistrētu vismazākās korekcijas izmaksas, mainot A[i] uz j, kur n ir masīva garums un M ir tā maksimālā vērtība.
- Aprēķiniet mazākās korekcijas izmaksas, mainot A[0] uz j masīva pirmajam elementam dp[0][j], izmantojot formulu dp[0][j] = abs (j - A[0]).
- Aizstāt A[i] ar j atlikušajos masīva elementos dp[i][j] un izmantojiet formulu dp[i][j] = min(dp[i-1][k] + abs(A[i] - j)), kur k ņem visas iespējamās vērtības no max(j-target0) un min(Mj+target), lai iegūtu minimālās korekcijas izmaksas.
- Kā minimālās korekcijas izmaksas norādiet mazāko skaitli no dp tabulas pēdējās rindas.
Tālāk ir sniegta iepriekš minētās idejas īstenošana:
C++// C++ program to find minimum adjustment cost of an array #include using namespace std; #define M 100 // Function to find minimum adjustment cost of an array int minAdjustmentCost(int A[] int n int target) { // dp[i][j] stores minimal adjustment cost on changing // A[i] to j int dp[n][M + 1]; // handle first element of array separately for (int j = 0; j <= M; j++) dp[0][j] = abs(j - A[0]); // do for rest elements of the array for (int i = 1; i < n; i++) { // replace A[i] to j and calculate minimal adjustment // cost dp[i][j] for (int j = 0; j <= M; j++) { // initialize minimal adjustment cost to INT_MAX dp[i][j] = INT_MAX; // consider all k such that k >= max(j - target 0) and // k <= min(M j + target) and take minimum for (int k = max(j-target0); k <= min(Mj+target); k++) dp[i][j] = min(dp[i][j] dp[i - 1][k] + abs(A[i] - j)); } } // return minimum value from last row of dp table int res = INT_MAX; for (int j = 0; j <= M; j++) res = min(res dp[n - 1][j]); return res; } // Driver Program to test above functions int main() { int arr[] = {55 77 52 61 39 6 25 60 49 47}; int n = sizeof(arr) / sizeof(arr[0]); int target = 10; cout << 'Minimum adjustment cost is ' << minAdjustmentCost(arr n target) << endl; return 0; }
Java // Java program to find minimum adjustment cost of an array import java.io.*; import java.util.*; class GFG { public static int M = 100; // Function to find minimum adjustment cost of an array static int minAdjustmentCost(int A[] int n int target) { // dp[i][j] stores minimal adjustment cost on changing // A[i] to j int[][] dp = new int[n][M + 1]; // handle first element of array separately for (int j = 0; j <= M; j++) dp[0][j] = Math.abs(j - A[0]); // do for rest elements of the array for (int i = 1; i < n; i++) { // replace A[i] to j and calculate minimal adjustment // cost dp[i][j] for (int j = 0; j <= M; j++) { // initialize minimal adjustment cost to INT_MAX dp[i][j] = Integer.MAX_VALUE; // consider all k such that k >= max(j - target 0) and // k <= min(M j + target) and take minimum int k = Math.max(j-target0); for ( ; k <= Math.min(Mj+target); k++) dp[i][j] = Math.min(dp[i][j] dp[i - 1][k] + Math.abs(A[i] - j)); } } // return minimum value from last row of dp table int res = Integer.MAX_VALUE; for (int j = 0; j <= M; j++) res = Math.min(res dp[n - 1][j]); return res; } // Driver program public static void main (String[] args) { int arr[] = {55 77 52 61 39 6 25 60 49 47}; int n = arr.length; int target = 10; System.out.println('Minimum adjustment cost is ' +minAdjustmentCost(arr n target)); } } // This code is contributed by Pramod Kumar
Python3 # Python3 program to find minimum # adjustment cost of an array M = 100 # Function to find minimum # adjustment cost of an array def minAdjustmentCost(A n target): # dp[i][j] stores minimal adjustment # cost on changing A[i] to j dp = [[0 for i in range(M + 1)] for i in range(n)] # handle first element # of array separately for j in range(M + 1): dp[0][j] = abs(j - A[0]) # do for rest elements # of the array for i in range(1 n): # replace A[i] to j and # calculate minimal adjustment # cost dp[i][j] for j in range(M + 1): # initialize minimal adjustment # cost to INT_MAX dp[i][j] = 100000000 # consider all k such that # k >= max(j - target 0) and # k <= min(M j + target) and # take minimum for k in range(max(j - target 0) min(M j + target) + 1): dp[i][j] = min(dp[i][j] dp[i - 1][k] + abs(A[i] - j)) # return minimum value from # last row of dp table res = 10000000 for j in range(M + 1): res = min(res dp[n - 1][j]) return res # Driver Code arr= [55 77 52 61 39 6 25 60 49 47] n = len(arr) target = 10 print('Minimum adjustment cost is' minAdjustmentCost(arr n target) sep = ' ') # This code is contributed # by sahilshelangia
C# // C# program to find minimum adjustment // cost of an array using System; class GFG { public static int M = 100; // Function to find minimum adjustment // cost of an array static int minAdjustmentCost(int []A int n int target) { // dp[i][j] stores minimal adjustment // cost on changing A[i] to j int[] dp = new int[nM + 1]; // handle first element of array // separately for (int j = 0; j <= M; j++) dp[0j] = Math.Abs(j - A[0]); // do for rest elements of the array for (int i = 1; i < n; i++) { // replace A[i] to j and calculate // minimal adjustment cost dp[i][j] for (int j = 0; j <= M; j++) { // initialize minimal adjustment // cost to INT_MAX dp[ij] = int.MaxValue; // consider all k such that // k >= max(j - target 0) and // k <= min(M j + target) and // take minimum int k = Math.Max(j - target 0); for ( ; k <= Math.Min(M j + target); k++) dp[ij] = Math.Min(dp[ij] dp[i - 1k] + Math.Abs(A[i] - j)); } } // return minimum value from last // row of dp table int res = int.MaxValue; for (int j = 0; j <= M; j++) res = Math.Min(res dp[n - 1j]); return res; } // Driver program public static void Main () { int []arr = {55 77 52 61 39 6 25 60 49 47}; int n = arr.Length; int target = 10; Console.WriteLine('Minimum adjustment' + ' cost is ' + minAdjustmentCost(arr n target)); } } // This code is contributed by Sam007.
JavaScript <script> // Javascript program to find minimum adjustment cost of an array let M = 100; // Function to find minimum adjustment cost of an array function minAdjustmentCost(A n target) { // dp[i][j] stores minimal adjustment cost on changing // A[i] to j let dp = new Array(n); for (let i = 0; i < n; i++) { dp[i] = new Array(n); for (let j = 0; j <= M; j++) { dp[i][j] = 0; } } // handle first element of array separately for (let j = 0; j <= M; j++) dp[0][j] = Math.abs(j - A[0]); // do for rest elements of the array for (let i = 1; i < n; i++) { // replace A[i] to j and calculate minimal adjustment // cost dp[i][j] for (let j = 0; j <= M; j++) { // initialize minimal adjustment cost to INT_MAX dp[i][j] = Number.MAX_VALUE; // consider all k such that k >= max(j - target 0) and // k <= min(M j + target) and take minimum let k = Math.max(j-target0); for ( ; k <= Math.min(Mj+target); k++) dp[i][j] = Math.min(dp[i][j] dp[i - 1][k] + Math.abs(A[i] - j)); } } // return minimum value from last row of dp table let res = Number.MAX_VALUE; for (let j = 0; j <= M; j++) res = Math.min(res dp[n - 1][j]); return res; } let arr = [55 77 52 61 39 6 25 60 49 47]; let n = arr.length; let target = 10; document.write('Minimum adjustment cost is ' +minAdjustmentCost(arr n target)); // This code is contributed by decode2207. </script>
PHP // PHP program to find minimum // adjustment cost of an array $M = 100; // Function to find minimum // adjustment cost of an array function minAdjustmentCost( $A $n $target) { // dp[i][j] stores minimal // adjustment cost on changing // A[i] to j global $M; $dp = array(array()); // handle first element // of array separately for($j = 0; $j <= $M; $j++) $dp[0][$j] = abs($j - $A[0]); // do for rest // elements of the array for($i = 1; $i < $n; $i++) { // replace A[i] to j and // calculate minimal adjustment // cost dp[i][j] for($j = 0; $j <= $M; $j++) { // initialize minimal adjustment // cost to INT_MAX $dp[$i][$j] = PHP_INT_MAX; // consider all k such that // k >= max(j - target 0) and // k <= min(M j + target) and // take minimum for($k = max($j - $target 0); $k <= min($M $j + $target); $k++) $dp[$i][$j] = min($dp[$i][$j] $dp[$i - 1][$k] + abs($A[$i] - $j)); } } // return minimum value // from last row of dp table $res = PHP_INT_MAX; for($j = 0; $j <= $M; $j++) $res = min($res $dp[$n - 1][$j]); return $res; } // Driver Code $arr = array(55 77 52 61 39 6 25 60 49 47); $n = count($arr); $target = 10; echo 'Minimum adjustment cost is ' minAdjustmentCost($arr $n $target); // This code is contributed by anuj_67. ?> Izvade
Minimum adjustment cost is 75
Laika sarežģītība: O(n*m2)
Palīgtelpa: O(n *m)
Efektīva pieeja: Telpas optimizācija
Iepriekšējā pieejā pašreizējā vērtība dp[i][j] ir atkarīgs tikai no pašreizējās un iepriekšējās rindas vērtībām DP . Tātad, lai optimizētu telpas sarežģītību, aprēķinu glabāšanai izmantojam vienu 1D masīvu.
Ieviešanas soļi:
- Izveidojiet 1D vektoru dp izmēra m+1 .
- Iestatiet bāzes gadījumu, inicializējot vērtības DP .
- Tagad atkārtojiet apakšproblēmas, izmantojot ligzdotu cilpu, un iegūstiet pašreizējo vērtību no iepriekšējiem aprēķiniem.
- Tagad izveidojiet pagaidu 1d vektoru prev_dp izmanto, lai saglabātu pašreizējās vērtības no iepriekšējiem aprēķiniem.
- Pēc katras iterācijas piešķiriet vērtību prev_dp uz dp turpmākai iterācijai.
- Inicializējiet mainīgo res lai saglabātu galīgo atbildi un atjauninātu to, atkārtojot caur Dp.
- Beidzot atgriezieties un izdrukājiet saglabāto galīgo atbildi res .
Īstenošana:
#include using namespace std; #define M 100 // Function to find minimum adjustment cost of an array int minAdjustmentCost(int A[] int n int target) { int dp[M + 1]; // Array to store the minimum adjustment costs for each value for (int j = 0; j <= M; j++) dp[j] = abs(j - A[0]); // Initialize the first row with the absolute differences for (int i = 1; i < n; i++) // Iterate over the array elements { int prev_dp[M + 1]; memcpy(prev_dp dp sizeof(dp)); // Store the previous row's minimum costs for (int j = 0; j <= M; j++) // Iterate over the possible values { dp[j] = INT_MAX; // Initialize the current value with maximum cost // Find the minimum cost by considering the range of previous values for (int k = max(j - target 0); k <= min(M j + target); k++) dp[j] = min(dp[j] prev_dp[k] + abs(A[i] - j)); } } int res = INT_MAX; for (int j = 0; j <= M; j++) res = min(res dp[j]); // Find the minimum cost in the last row return res; // Return the minimum adjustment cost } int main() { int arr[] = {55 77 52 61 39 6 25 60 49 47}; int n = sizeof(arr) / sizeof(arr[0]); int target = 10; cout << 'Minimum adjustment cost is ' << minAdjustmentCost(arr n target) << endl; return 0; }
Java import java.util.Arrays; public class MinimumAdjustmentCost { static final int M = 100; // Function to find the minimum adjustment cost of an array static int minAdjustmentCost(int[] A int n int target) { int[] dp = new int[M + 1]; // Initialize the first row with absolute differences for (int j = 0; j <= M; j++) { dp[j] = Math.abs(j - A[0]); } // Iterate over the array elements for (int i = 1; i < n; i++) { int[] prev_dp = Arrays.copyOf(dp dp.length); // Store the previous row's minimum costs // Iterate over the possible values for (int j = 0; j <= M; j++) { dp[j] = Integer.MAX_VALUE; // Initialize the current value with maximum cost // Find the minimum cost by considering the range of previous values for (int k = Math.max(j - target 0); k <= Math.min(M j + target); k++) { dp[j] = Math.min(dp[j] prev_dp[k] + Math.abs(A[i] - j)); } } } int res = Integer.MAX_VALUE; for (int j = 0; j <= M; j++) { res = Math.min(res dp[j]); // Find the minimum cost in the last row } return res; // Return the minimum adjustment cost } public static void main(String[] args) { int[] arr = { 55 77 52 61 39 6 25 60 49 47 }; int n = arr.length; int target = 10; System.out.println('Minimum adjustment cost is ' + minAdjustmentCost(arr n target)); } }
Python3 def min_adjustment_cost(A n target): M = 100 dp = [0] * (M + 1) # Initialize the first row of dp with absolute differences for j in range(M + 1): dp[j] = abs(j - A[0]) # Iterate over the array elements for i in range(1 n): prev_dp = dp[:] # Store the previous row's minimum costs for j in range(M + 1): dp[j] = float('inf') # Initialize the current value with maximum cost # Find the minimum cost by considering the range of previous values for k in range(max(j - target 0) min(M j + target) + 1): dp[j] = min(dp[j] prev_dp[k] + abs(A[i] - j)) res = float('inf') for j in range(M + 1): res = min(res dp[j]) # Find the minimum cost in the last row return res if __name__ == '__main__': arr = [55 77 52 61 39 6 25 60 49 47] n = len(arr) target = 10 print('Minimum adjustment cost is' min_adjustment_cost(arr n target))
C# using System; class Program { const int M = 100; // Function to find minimum adjustment cost of an array static int MinAdjustmentCost(int[] A int n int target) { int[] dp = new int[M + 1]; // Array to store the minimum adjustment costs for each value for (int j = 0; j <= M; j++) { dp[j] = Math.Abs(j - A[0]); // Initialize the first row with the absolute differences } for (int i = 1; i < n; i++) // Iterate over the array elements { int[] prevDp = (int[])dp.Clone(); // Store the previous row's minimum costs for (int j = 0; j <= M; j++) // Iterate over the possible values { dp[j] = int.MaxValue; // Initialize the current value with maximum cost // Find the minimum cost by considering the range of previous values for (int k = Math.Max(j - target 0); k <= Math.Min(M j + target); k++) { dp[j] = Math.Min(dp[j] prevDp[k] + Math.Abs(A[i] - j)); } } } int res = int.MaxValue; for (int j = 0; j <= M; j++) { res = Math.Min(res dp[j]); // Find the minimum cost in the last row } return res; // Return the minimum adjustment cost } static void Main() { int[] arr = { 55 77 52 61 39 6 25 60 49 47 }; int n = arr.Length; int target = 10; Console.WriteLine('Minimum adjustment cost is ' + MinAdjustmentCost(arr n target)); } }
JavaScript const M = 100; // Function to find minimum adjustment cost of an array function minAdjustmentCost(A n target) { let dp = new Array(M + 1); // Array to store the minimum adjustment costs for each value for (let j = 0; j <= M; j++) dp[j] = Math.abs(j - A[0]); // Initialize the first row with the absolute differences for (let i = 1; i < n; i++) // Iterate over the array elements { let prev_dp = [...dp]; // Store the previous row's minimum costs for (let j = 0; j <= M; j++) // Iterate over the possible values { dp[j] = Number.MAX_VALUE; // Initialize the current value with maximum cost // Find the minimum cost by considering the range of previous values for (let k = Math.max(j - target 0); k <= Math.min(M j + target); k++) dp[j] = Math.min(dp[j] prev_dp[k] + Math.abs(A[i] - j)); } } let res = Number.MAX_VALUE; for (let j = 0; j <= M; j++) res = Math.min(res dp[j]); // Find the minimum cost in the last row return res; // Return the minimum adjustment cost } let arr = [55 77 52 61 39 6 25 60 49 47]; let n = arr.length; let target = 10; console.log('Minimum adjustment cost is ' + minAdjustmentCost(arr n target)); // This code is contributed by Kanchan Agarwal
Izvade
Minimum adjustment cost is 75
Laika sarežģītība: O(n*m2)
Palīgtelpa: O (m)