Jums tiek dota a Bitoniskā secība uzdevums ir atrast Bitoniskais punkts tajā. Bitoniskā secība ir skaitļu secība, kas ir stingri pirmā pieaug tad pēc punkta stingri samazinās .
Bitoniskais punkts ir bitoniskās secības punkts, pirms kura elementi stingri palielinās un pēc kura elementi stingri samazinās.
Piezīme: Dotā secība vienmēr būs derīga bitoniskā secība.
Piemēri:
Ievade: arr[] = {8 10 100 200 400 500 3 2 1}
Izvade : 500
Ievade: arr[] = {10 20 30 40 30 20}
Izvade : 40
Ievade : arr[] = {60 70 120 100 80}
Izvade: 120
Satura rādītājs
- [Naīvā pieeja] Lineārās meklēšanas izmantošana - O(n) laiks un O(1) telpa
- [Paredzamā pieeja] Izmantojot bināro meklēšanu — O(logn) laiks un O(1) telpa
[Naīvā pieeja] Lineārās meklēšanas izmantošana - O(n) laiks un O(1) telpa
C++Vienkārša pieeja ir atkārtot masīvu un sekot līdzi maksimums elements noticis līdz šim. kad šķērsošana ir pabeigta, atgrieziet maksimālo elementu.
// C++ program to find maximum element in bitonic // array using linear search #include #include using namespace std; int bitonicPoint(vector<int> &arr) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < arr.size(); i++) res = max(res arr[i]); return res; } int main() { vector<int> arr = {8 10 100 400 500 3 2 1}; cout << bitonicPoint(arr); return 0; }
C // C program to find maximum element in bitonic // array using linear search #include int bitonicPoint(int arr[] int n) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < n; i++) res = (res > arr[i]) ? res : arr[i]; return res; } int main() { int arr[] = {8 10 100 400 500 3 2 1}; int n = sizeof(arr) / sizeof(arr[0]); printf('%dn' bitonicPoint(arr n)); return 0; }
Java // Java program to find maximum element in bitonic // array using linear search import java.util.Arrays; class GfG { static int bitonicPoint(int[] arr) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < arr.length; i++) res = Math.max(res arr[i]); return res; } public static void main(String[] args) { int[] arr = {8 10 100 400 500 3 2 1}; System.out.println(bitonicPoint(arr)); } }
Python # Python program to find maximum element in # bitonic array using linear search def bitonicPoint(arr): res = arr[0] # Traverse the array to find # the maximum element for i in range(1 len(arr)): res = max(res arr[i]) return res if __name__ == '__main__': arr = [8 10 100 400 500 3 2 1] print(bitonicPoint(arr))
C# // C# program to find maximum element in bitonic // array using linear search using System; class GfG { static int bitonicPoint(int[] arr) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < arr.Length; i++) res = Math.Max(res arr[i]); return res; } static void Main() { int[] arr = {8 10 100 400 500 3 2 1}; Console.WriteLine(bitonicPoint(arr)); } }
JavaScript // JavaScript program to find maximum element in // bitonic array using linear search function bitonicPoint(arr) { let res = arr[0]; // Traverse the array to find // the maximum element for (let i = 1; i < arr.length; i++) res = Math.max(res arr[i]); return res; } const arr = [8 10 100 400 500 3 2 1]; console.log(bitonicPoint(arr));
Izvade
500
[Paredzamā pieeja] Izmantojot bināro meklēšanu — O(logn) laiks un O(1) telpa
Ievades masīvs seko a monotonisks raksts . Ja elements ir mazāks nekā nākamais tas atrodas i pieaugošs segments masīva un maksimālais elements noteikti pastāvēs pēc tā. Un otrādi, ja elements ir lielāks nekā nākamajā tas atrodas samazinās segments tas nozīmē, ka maksimums ir vai nu šajā pozīcijā, vai agrāk. Tāpēc mēs varam izmantot binārā meklēšana lai efektīvi atrastu maksimālo elementu masīvā.
// C++ program to find the maximum element in a bitonic // array using binary search. #include #include using namespace std; int bitonicPoint(vector<int> &arr) { int n = arr.size(); // Search space for binary search. int lo = 0 hi = n - 1; int res = n - 1; while(lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if(mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } int main() { vector<int> arr = {8 10 100 400 500 3 2 1}; cout << bitonicPoint(arr); return 0; }
C // C program to find the maximum element in a bitonic // array using binary search. #include int bitonicPoint(int arr[] int n) { // Search space for binary search. int lo = 0 hi = n - 1; int res = hi; while(lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if(mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } int main() { int arr[] = {8 10 100 400 500 3 2 1}; int n = sizeof(arr) / sizeof(arr[0]); printf('%dn' bitonicPoint(arr n)); return 0; }
Java // Java program to find the maximum element in a bitonic // array using binary search. import java.util.Arrays; class GfG { static int bitonicPoint(int[] arr) { int n = arr.length; // Search space for binary search. int lo = 0 hi = n - 1; int res = n - 1; while (lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if (mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } public static void main(String[] args) { int[] arr = {8 10 100 400 500 3 2 1}; System.out.println(bitonicPoint(arr)); } }
Python # Python program to find the maximum element in a bitonic # array using binary search. def bitonicPoint(arr): # Search space for binary search. lo = 0 hi = len(arr) - 1 res = hi while lo <= hi: mid = (lo + hi) // 2 # Decreasing segment if mid + 1 < len(arr) and arr[mid] > arr[mid + 1]: res = mid hi = mid - 1 # Increasing segment else: lo = mid + 1 return arr[res] if __name__ == '__main__': arr = [8 10 100 400 500 3 2 1] print(bitonicPoint(arr))
C# // C# program to find the maximum element in a bitonic // array using binary search. using System; class GfG { static int bitonicPoint(int[] arr) { int n = arr.Length; // Search space for binary search. int lo = 0 hi = n - 1; int res = n - 1; while (lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if (mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } static void Main() { int[] arr = {8 10 100 400 500 3 2 1}; Console.WriteLine(bitonicPoint(arr)); } }
JavaScript // JavaScript program to find the maximum element in a bitonic // array using binary search. function bitonicPoint(arr) { const n = arr.length; // Search space for binary search. let lo = 0 hi = n - 1; let res = n - 1; while (lo <= hi) { let mid = Math.floor((lo + hi) / 2); // Decreasing segment if (mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } const arr = [8 10 100 400 500 3 2 1]; console.log(bitonicPoint(arr));
Izvade
500Izveidojiet viktorīnu