Ievads Python kompleksajos skaitļos: Kompleksie skaitļi Python | 1. komplekts (ievads) Šajā rakstā ir apskatītas dažas svarīgākas funkcijas un konstantes. Operācijas ar kompleksajiem skaitļiem : 1. exp() :- Šī funkcija atgriež eksponents no kompleksā skaitļa, kas minēts tā argumentā. 2. žurnāls(xb) :- Šī funkcija atgriež x logaritmiskā vērtība ar bāzi b both mentioned in its arguments. If base is not specified natural log of x is returned. Python # Python code to demonstrate the working of # exp() log() # importing 'cmath' for complex number operations import cmath import math # Initializing real numbers x = 1.0 y = 1.0 # converting x and y into complex number z = complex(x y); # printing exponent of complex number print ('The exponent of complex number is : ' end='') print (cmath.exp(z)) # printing log form of complex number print ('The log(base 10) of complex number is : ' end='') print (cmath.log(z10)) Output: The exponent of complex number is : (1.4686939399158851+2.2873552871788423j) The log(base 10) of complex number is : (0.15051499783199057+0.3410940884604603j)
3. log10() :- Šī funkcija atgriež baļķu pamatne 10 no kompleksā skaitļa. 4. sqrt() :- Tas aprēķina kvadrātsakne of a complex number. Python # Python code to demonstrate the working of # log10() sqrt() # importing 'cmath' for complex number operations import cmath import math # Initializing real numbers x = 1.0 y = 1.0 # converting x and y into complex number z = complex(x y); # printing log10 of complex number print ('The log10 of complex number is : ' end='') print (cmath.log10(z)) # printing square root form of complex number print ('The square root of complex number is : ' end='') print (cmath.sqrt(z)) Output: The log10 of complex number is : (0.15051499783199057+0.3410940884604603j) The square root of complex number is : (1.09868411346781+0.45508986056222733j)
5. isfinite() :- Atgriežas patiess, ja gan reālā, gan iedomātā daļa no kompleksā skaitļa ir ierobežots citādi atgriež false. 6. Tev () :- Atgriežas patiesa, ja tā ir reāla vai iedomāta daļa no kompleksā skaitļa ir/ir bezgalīgs citādi atgriež false. 7. isnan() :- Atgriež patiesību, ja vai nu reālā, vai iedomātā daļa no kompleksā skaitļa ir NaN else returns false. Python # Python code to demonstrate the working of # isnan() isinf() isfinite() # importing 'cmath' for complex number operations import cmath import math # Initializing real numbers x = 1.0 y = 1.0 a = math.inf b = math.nan # converting x and y into complex number z = complex(xy); # converting x and a into complex number w = complex(xa); # converting x and b into complex number v = complex(xb); # checking if both numbers are finite if cmath.isfinite(z): print ('Complex number is finite') else : print ('Complex number is infinite') # checking if either number is/are infinite if cmath.isinf(w): print ('Complex number is infinite') else : print ('Complex number is finite') # checking if either number is/are infinite if cmath.isnan(v): print ('Complex number is NaN') else : print ('Complex number is not NaN') Output: Complex number is finite Complex number is infinite Complex number is NaN
Konstantes Cmath modulī ir definētas divas konstantes "pī" kas atgriež pi skaitlisko vērtību. Otrais ir "un" which returns the numerical value of exponent. Python # Python code to demonstrate the working of # pi and e # importing 'cmath' for complex number operations import cmath import math # printing the value of pi print ('The value of pi is : ' end='') print (cmath.pi) # printing the value of e print ('The value of exponent is : ' end='') print (cmath.e) Output: The value of pi is : 3.141592653589793 The value of exponent is : 2.718281828459045
Kompleksie skaitļi Python | 3. kopa (trigonometriskās un hiperboliskās funkcijas)