#practiceLinkDiv { display: none !important; }Ir divi apļi A un B ar to centriem C1(x1 y1) un C2(x2y2) un rādiuss R1 un R2 . Uzdevums ir pārbaudīt, vai abi apļi A un B pieskaras viens otram vai nē.
Piemēri:
Ieteicamā praksePārbaudiet, vai divi dotie apļi pieskaras viens otram Izmēģiniet to!Ievade: C1 = (3 4)
C2 = (14 18)
R1 = 5 R2 = 8
Izvade: Apļi nepieskaras viens otram.
Ievade: C1 = (2 3)
C2 = (15 28)
R1 = 12 R2 = 10
Izvade: Apļi krustojas viens ar otru.Ievade: C1 = (-10 8)
C2 = (14–24)
R1 = 30 R2 = 10
Pieeja:
Attālums starp centriem C1 un C2 tiek aprēķināts kā
C1C2 = kvadrāts((x1 - x2) 2+ (y1 - y2) 2 ).
Ir trīs nosacījumi, kas rodas.
- Ja C1C2<= R1 - R2: Aplis B atrodas A iekšpusē.
- Ja C1C2<= R2 - R1: Aplis A atrodas B iekšpusē.
- Ja C1C2< R1 + R2: Aplis krustojas viens ar otru.
- Ja C1C2 == R1 + R2: Aplis A un B saskaras viens ar otru.
- Citādi Aplis A un B nepārklājas
Tālāk ir aprakstīta iepriekš minētās pieejas īstenošana.
C++// C++ program to check if two // circles touch each other or not. #include using namespace std; int circle(int x1 int y1 int x2 int y2 int r1 int r2) { double d = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); if (d <= r1 - r2) { cout << 'Circle B is inside A'; } else if (d <= r2 - r1) { cout << 'Circle A is inside B'; } else if (d < r1 + r2) { cout << 'Circle intersect to each other'; } else if (d == r1 + r2) { cout << 'Circle touch to each other'; } else { cout << 'Circle not touch to each other'; } } // Driver code int main() { int x1 = -10 y1 = 8; int x2 = 14 y2 = -24; int r1 = 30 r2 = 10; circle(x1 y1 x2 y2 r1 r2); return 0; }
Java // Java program to check if two // circles touch each other or not. import java.io.*; class GFG { static void circle(int x1 int y1 int x2 int y2 int r1 int r2) { double d = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); if (d <= r1 - r2) { System.out.println('Circle B is inside A'); } else if (d <= r2 - r1) { System.out.println('Circle A is inside B'); } else if (d < r1 + r2) { System.out.println('Circle intersect' + ' to each other'); } else if (d == r1 + r2) { System.out.println('Circle touch to' + ' each other'); } else { System.out.println('Circle not touch' + ' to each other'); } } // Driver code public static void main(String[] args) { int x1 = -10 y1 = 8; int x2 = 14 y2 = -24; int r1 = 30 r2 = 10; circle(x1 y1 x2 y2 r1 r2); } } // This article is contributed by vt_m.
Python # Python program to check if two # circles touch each other or not. import math # Function to check if two circles touch each other def circle(x1 y1 x2 y2 r1 r2): d = math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) if(d <= r1 - r2): print('Circle B is inside A') elif(d <= r2 - r1): print('Circle A is inside B') elif(d < r1 + r2): print('Circle intersect to each other') elif(d == r1 + r2): print('Circle touch to each other') else: print('Circle not touch to each other') # Driver code x1 y1 = -10 8 x2 y2 = 14 -24 r1 r2 = 30 10 # Function call circle(x1 y1 x2 y2 r1 r2) # This code is contributed by Aman Kumar
C# // C# program to check if two // circles touch each other or not. using System; class GFG { static void circle(int x1 int y1 int x2 int y2 int r1 int r2) { double d = Math.Sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); if (d <= r1 - r2) { Console.Write('Circle B is inside A'); } else if (d <= r2 - r1) { Console.Write('Circle A is inside B'); } else if (d < r1 + r2) { Console.Write('Circle intersect' + ' to each other'); } else if (d == r1 + r2) { Console.Write('Circle touch to' + ' each other'); } else { Console.Write('Circle not touch' + ' to each other'); } } // Driver code public static void Main(String[] args) { int x1 = -10 y1 = 8; int x2 = 14 y2 = -24; int r1 = 30 r2 = 10; circle(x1 y1 x2 y2 r1 r2); } } // This article is contributed by Pushpesh Raj.
JavaScript // JavaScript program to check if two circles touch each other or not. function circle(x1 y1 x2 y2 r1 r2) { var d = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); if (d <= r1 - r2) { console.log('Circle B is inside A'); } else if (d <= r2 - r1) { console.log('Circle A is inside B'); } else if (d < r1 + r2) { console.log('Circle intersect to each other'); } else if (d === r1 + r2) { console.log('Circle touch to each other'); } else { console.log('Circle not touch to each other'); } } // Driver code var x1 = -10 y1 = 8; var x2 = 14 y2 = -24; var r1 = 30 r2 = 10; circle(x1 y1 x2 y2 r1 r2); // this code is contributed by devendra
Izvade
Circle touch to each other
Laika sarežģītība: O(log(n)), jo tiek izmantota iebūvētā sqrt funkcija
Palīgtelpa: O(1)
Šī raksta autors ir Aarti_Rathi un Dharmendra Kumar .