logo

Kas ir 3 pret 6. pakāpi?

Matemātika ir ne tikai par skaitļiem, bet arī par dažādu aprēķinu veikšanu, izmantojot skaitļus un mainīgos. Tas ir tas, kas būtībā ir pazīstams kā algebra. Algebra ir definēta kā aprēķinu attēlojums, kas ietver matemātiskas izteiksmes, kas sastāv no skaitļiem, operatoriem un mainīgajiem. Skaitļi var būt no 0 līdz 9, operatori ir matemātiskie operatori, piemēram, +, -, ×, ÷, eksponenti utt., mainīgie, piemēram, x, y, z utt.

Eksponenti un pilnvaras

Eksponenti un pakāpes ir pamata operatori, ko izmanto matemātiskajos aprēķinos, eksponenti tiek izmantoti, lai vienkāršotu sarežģītus aprēķinus, kas ietver vairākas pašreizināšanas, pašreizināšanas pamatā ir skaitļi, kas reizināti paši ar sevi. Piemēram, 7 × 7 × 7 × 7 × 7 var vienkārši uzrakstīt kā 75. Šeit 7 ir bāzes vērtība un 5 ir eksponents, un vērtība ir 16807. 11 × 11 × 11 var uzrakstīt kā 113, šeit 11 ir bāzes vērtība un 3 ir 11 eksponents vai pakāpe. Vērtība 113ir 1331.



Eksponents tiek definēts kā skaitlim piešķirtā jauda, ​​reižu skaits, kad tas tiek reizināts ar sevi. Ja izteiksme ir uzrakstīta kā cxunkur c ir konstante, c būs koeficients, x ir bāze un y ir eksponents. Ja skaitlis saka p, tiek reizināts n reizes, n būs p eksponents. Tas tiks rakstīts kā,

p × p × p × p … n reizes = p n

Eksponentu pamatnoteikumi

Eksponentiem ir noteikti daži pamatnoteikumi, lai atrisinātu eksponenciālās izteiksmes kopā ar citām matemātiskām operācijām, piemēram, ja ir divu eksponentu reizinājums, to var vienkāršot, lai atvieglotu aprēķinu, un to sauc par produkta noteikumu, apskatīsim dažus eksponentu pamatnoteikumus,



linux komanda zip
  • Produkta noteikums ⇢ an+ am= an + m
  • Koeficienta noteikums ⇢ an/am= an – m
  • Jaudas noteikums ⇢ (an)m= an × mvaim√an= an/m
  • Negatīvā eksponenta noteikums ⇢ a-m= 1/am
  • Nulles noteikums ⇢ a0= 1
  • Viens noteikums ⇢ a1= a

Kas ir 3 pret 6thspēks?

Risinājums :

Jebkuru skaitli ar pakāpju 6 var uzrakstīt kā 6 eksponentu. Sakiet, ka x palielināts līdz 6 pakāpei, var uzrakstīt kā x6. Skaitļa jauda 6 ir skaitlis, kas reizināts ar sevi sešas reizes, skaitļa sestā pakāpe ir attēlota kā šī skaitļa eksponents 6. Ja ir jāuzraksta x pakāpe 6, tas būs x6. Piemēram, jauda 6 no 5 tiek attēlota kā 56un ir vienāds ar 5 × 5 × 5 × 5 × 5 × 5 = 15625. Vēl viens piemērs var būt jauda 6 no 12, kas attēlota kā 126, kas ir vienāds ar 12 × 12 × 12 × 12 × 12 × 12 = 2 985 984.

Atgriezīsimies pie problēmas izklāsta un sapratīsim, kā tas tiks atrisināts, uzdevuma izklāstā tika lūgts vienkāršot 3 līdz 6. pakāpei. Tas nozīmē, ka jautājums prasa atrisināt jaudu 6 no 3, kas tiek attēlota kā 36,



36= 3 × 3 × 3 × 3 × 3 × 3

= 81 × 9

= 729

Tāpēc 729 ir 3 sestais pakāpe.

Problēmas paraugs

1. jautājums: atrisiniet 4. izteiksmi 3 - 2 3 .

Risinājums:

Lai atrisinātu izteiksmi, vispirms atrisiniet skaitļu 3. pakāpes un pēc tam atņemiet otro daļu no pirmā vārda. Tomēr to pašu problēmu var atrisināt vienkāršāk, vienkārši piemērojot formulu, formula ir,

x3- un3= (x – y)(x2+ un2+ xy)

salīdziniet java virkni

43- 23= (4–2) (42+ 22+ 4 × 2)

= 2 × (16 + 4 + 8)

= 2 × 28

= 56

2. jautājums: atrisiniet izteiksmi 11 2 - 5 2 .

Risinājums:

Lai atrisinātu izteiksmi, vispirms atrisiniet skaitļu 2. pakāpes un pēc tam atņemiet otro daļu no pirmā vārda. Tomēr to pašu problēmu var atrisināt vienkāršāk, vienkārši piemērojot formulu, formula ir,

virknes konvertēšana uz json java

x2- un2= (x + y) (x – y)

vienpadsmit2- 52= (11 + 5) (11–5)

= 16 × 6

= 96

3. jautājums: atrisiniet 3. izteiksmi 3 + 9 3 .

Risinājums:

Lai atrisinātu izteiksmi, vispirms atrisiniet skaitļu 3. pakāpes un pēc tam atņemiet otro daļu no pirmā vārda. Tomēr to pašu problēmu var atrisināt vienkāršāk, vienkārši piemērojot formulu, formula ir,

x3+ un3= (x + y) (x2+ un2– xy)

alfabēts uz cipariem

33+ 93= (9 + 3) (32+ 92- 3 × 9)

= 12 × (9 + 81–27)

= 12 × 63

= 756