logo

Ķīniešu atlikuma teorēmas izmantošana modulāro vienādojumu apvienošanai

Doti N modulāri vienādojumi: A ? x1mod (m1) . . A ? xnmod (mn) Atrodiet vienādojumā x A ? xmod (m1*m2*m3..*mn) kur miir pirmskaitlis vai pirmskaitļa pakāpe, un i ņem vērtības no 1 līdz n. Ievade tiek dota kā divi masīvi, no kuriem pirmais ir masīvs, kurā ir katra x vērtībasiun otrais masīvs, kas satur katra pirmskaitļa vērtību kopu. miIzvadiet veselu skaitli x vērtībai gala vienādojumā. 

Piemēri: 

Consider the two equations A ? 2mod(3) A ? 3mod(5)   Input :   2 3 3 5   Output :    8 Consider the four equations A ? 3mod(4) A ? 4mod(7) A ? 1mod(9) (32) A ? 0mod(11)   Input :   3 4 1 0 4 7 9 11   Output :   1243

Paskaidrojums: Mūsu mērķis ir atrisināt šos vienādojumus divus vienlaikus. Mēs ņemam pirmos divus vienādojumus, apvienojot tos un izmantojam šo rezultātu, lai apvienotu ar trešo vienādojumu un tā tālāk. Divu vienādojumu apvienošanas process ir izskaidrots šādi, atsaucei izmantojot 2. piemēru:



  1. A ? 3mod(4) un A ? 4mod (7) ir divi vienādojumi, kas mums tiek nodrošināti sākumā. Ļaujiet iegūtajam vienādojumam būt kādam A? xmod (m1* m2).
    • Air dots m1' * m1*x+ m' * m*x1kur m1' = m modulāra apgrieztā vērtība1modulis mun m' = m modulāra apgrieztā vērtībamodulis m1
    • Mēs varam aprēķināt modulāro inverso, izmantojot paplašināto eiklīda algoritmu.
    • Mēs atrodam xbūt Amod (m1* m2)
    • Mūsu jaunais vienādojums ir A ? 11mod(28), kur A ir 95
  2. Tagad mēs mēģinām to apvienot ar vienādojumu 3 un ar līdzīgu metodi iegūstam A ? 235mod(252), kur A = 2503
  3. Un visbeidzot, apvienojot to ar vienādojumu 4, mēs iegūstam A ? 1243mod(2772), kur A = 59455 un x = 1243

Mēs novērojam, ka 2772 ir pareizi vienāds ar 4 * 7 * 9 * 11. Tādējādi mēs esam atraduši x vērtību gala vienādojumam. Jūs varat atsaukties uz Paplašinātais Eiklīda algoritms un Modulārais reizināšanas inverss lai iegūtu papildu informāciju par šīm tēmām. 

C++
// C++ program to combine modular equations // using Chinese Remainder Theorem #include   using namespace std; // function that implements Extended euclidean // algorithm vector<int> extended_euclidean(int aint b){  if(a == 0){  vector<int> temp;  temp.push_back(b);  temp.push_back(0);  temp.push_back(1);   return temp;  }  else{  vector<int> temp(3);  temp= extended_euclidean(b % a a);  int g = temp[0];  int y = temp[1];  int x = temp[2];  temp[0] = g;  temp[1] = x - ((b/a) * y);  temp[2] = y;  return temp;  }  vector<int> temp;  return temp; } // modular inverse driver function int modinv(int aint m){  vector<int> temp(3);  temp = extended_euclidean(a m);  int g = temp[0];  int x = temp[1];  int y = temp[2];    // Since we are taking the modulo of   // negative numbers so to have positive   // output of the modulo we use this formula.   int ans = x - (floor(x/(float)m) * m);  return ans; }   // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations int crt(vector<int> &mvector<int> & x) {    // We run this loop while the list of  // remainders has length greater than 1  while(1)  {    // temp1 will contain the new value   // of A. which is calculated according   // to the equation m1' * m1 * x0 + m0'  // * m0 * x1  int var1 = (modinv(m[1]m[0]));  int var2 = (modinv(m[0]m[1]) );  // cout << var1 << ' ' << var2 << endl;  int temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0];  // temp2 contains the value of the modulus  // in the new equation which will be the   // product of the modulii of the two  // equations that we are combining  int temp2 = m[0] * m[1];  // cout << temp1<< ' '<  // we then remove the first two elements  // from the list of remainders and replace  // it with the remainder value which will  // be temp1 % temp2  x.erase(x.begin());  x.erase(x.begin());  x.insert(x.begin() temp1%temp2);  //we then remove the first two values from  //the list of modulii as we no longer require  // them and simply replace them with the new   // modulii that we calculated  m.erase(m.begin());  m.erase(m.begin());  m.insert(m.begin() temp2);  // once the list has only one element left  // we can break as it will only contain   // the value of our final remainder  if(x.size()== 1){  break;  }  }    // returns the remainder of the final equation  return x[0]; } // driver segment int main(){  vector<int> m = {4 7 9 11};  vector<int> x = {3 4 1 0};  cout << crt(m x) << endl;  return 0; } // The code is contributed by Gautam goel (gautamgoe962) 
Java
// Java program to implement the Chinese Remainder Theorem import java.util.ArrayList; import java.math.BigInteger; public class ChineseRemainderTheorem {  // Function to calculate the modular inverse of a and m  public static BigInteger modinv(BigInteger a BigInteger m) {  BigInteger m0 = m;  BigInteger y = BigInteger.ZERO;  BigInteger x = BigInteger.ONE;  if (m.equals(BigInteger.ONE))  return BigInteger.ZERO;  while (a.compareTo(BigInteger.ONE) == 1) {  BigInteger q = a.divide(m);  BigInteger t = m;  m = a.mod(m);  a = t;  t = y;  y = x.subtract(q.multiply(y));  x = t;  }  if (x.compareTo(BigInteger.ZERO) == -1)  x = x.add(m0);  return x;  }  // Function to implement the Chinese Remainder Theorem  public static BigInteger crt(ArrayList<BigInteger> m ArrayList<BigInteger> x) {  BigInteger M = BigInteger.ONE;  for (int i = 0; i < m.size(); i++) {  M = M.multiply(m.get(i));  }  BigInteger result = BigInteger.ZERO;  for (int i = 0; i < m.size(); i++) {  BigInteger Mi = M.divide(m.get(i));  BigInteger MiInv = modinv(Mi m.get(i));  result = result.add(x.get(i).multiply(Mi).multiply(MiInv));  }  return result.mod(M);  }  public static void main(String[] args) {  ArrayList<BigInteger> m = new ArrayList<>();  ArrayList<BigInteger> x = new ArrayList<>();  m.add(BigInteger.valueOf(4));  m.add(BigInteger.valueOf(7));  m.add(BigInteger.valueOf(9));  m.add(BigInteger.valueOf(11));  x.add(BigInteger.valueOf(3));  x.add(BigInteger.valueOf(4));  x.add(BigInteger.valueOf(1));  x.add(BigInteger.valueOf(0));  System.out.println(crt(m x));  } } // This code is contributed by Vikram_Shirsat 
Python
# Python 2.x program to combine modular equations # using Chinese Remainder Theorem # function that implements Extended euclidean # algorithm def extended_euclidean(a b): if a == 0: return (b 0 1) else: g y x = extended_euclidean(b % a a) return (g x - (b // a) * y y) # modular inverse driver function def modinv(a m): g x y = extended_euclidean(a m) return x % m # function implementing Chinese remainder theorem # list m contains all the modulii # list x contains the remainders of the equations def crt(m x): # We run this loop while the list of # remainders has length greater than 1 while True: # temp1 will contain the new value  # of A. which is calculated according  # to the equation m1' * m1 * x0 + m0' # * m0 * x1 temp1 = modinv(m[1]m[0]) * x[0] * m[1] +  modinv(m[0]m[1]) * x[1] * m[0] # temp2 contains the value of the modulus # in the new equation which will be the  # product of the modulii of the two # equations that we are combining temp2 = m[0] * m[1] # we then remove the first two elements # from the list of remainders and replace # it with the remainder value which will # be temp1 % temp2 x.remove(x[0]) x.remove(x[0]) x = [temp1 % temp2] + x # we then remove the first two values from # the list of modulii as we no longer require # them and simply replace them with the new  # modulii that we calculated m.remove(m[0]) m.remove(m[0]) m = [temp2] + m # once the list has only one element left # we can break as it will only contain  # the value of our final remainder if len(x) == 1: break # returns the remainder of the final equation return x[0] # driver segment m = [4 7 9 11] x = [3 4 1 0] print crt(m x) 
C#
using System; using System.Collections; using System.Collections.Generic; using System.Linq; // C# program to combine modular equations // using Chinese Remainder Theorem class HelloWorld {  // function that implements Extended euclidean  // algorithm  public static List<int> extended_euclidean(int aint b){  if(a == 0){  List<int> temp = new List<int>();  temp.Add(b);  temp.Add(0);  temp.Add(1);   return temp;  }  else{  List<int> temp = new List<int>();  temp.Add(0);  temp.Add(0);  temp.Add(0);  temp= extended_euclidean(b % a a);  int g = temp[0];  int y = temp[1];  int x = temp[2];  temp[0] = g;  temp[1] = x - ((b/a) * y);  temp[2] = y;  return temp;  }  List<int> temp1 = new List<int>();  return temp1;  }  // modular inverse driver function  public static double modinv(int aint m){  List<int> temp = new List<int>();  temp.Add(0);  temp.Add(0);  temp.Add(0);  temp = extended_euclidean(a m);  int g = temp[0];  int x = temp[1];  int y = temp[2];  // Since we are taking the modulo of   // negative numbers so to have positive   // output of the modulo we use this formula.   double val = Math.Floor(((double)x/(double)m));  double ans = x - (val * m);  return ans;  }  // function implementing Chinese remainder theorem  // list m contains all the modulii  // list x contains the remainders of the equations  public static int crt(List<int> mList<int> x)  {  // We run this loop while the list of  // remainders has length greater than 1  while(true)  {  // temp1 will contain the new value   // of A. which is calculated according   // to the equation m1' * m1 * x0 + m0'  // * m0 * x1  double var1 = (modinv(m[1]m[0]));  double var2 = (modinv(m[0]m[1]));  // cout << var1 << ' ' << var2 << endl;  double temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0];  // temp2 contains the value of the modulus  // in the new equation which will be the   // product of the modulii of the two  // equations that we are combining  int temp2 = m[0] * m[1];  // cout << temp1<< ' '<  // we then remove the first two elements  // from the list of remainders and replace  // it with the remainder value which will  // be temp1 % temp2  x.RemoveAt(0);  x.RemoveAt(0);  x.Insert(0 (int)temp1%(int)temp2);  //we then remove the first two values from  //the list of modulii as we no longer require  // them and simply replace them with the new   // modulii that we calculated  m.RemoveAt(0);  m.RemoveAt(0);  m.Insert(0 temp2);  // once the list has only one element left  // we can break as it will only contain   // the value of our final remainder  if(x.Count == 1){  break;  }  }  // returns the remainder of the final equation  return x[0];  }  static void Main() {  List<int> m = new List<int>(){  4 7 9 11  };  List<int> x = new List<int> (){  3 4 1 0  };  Console.WriteLine(crt(m x));  } } // The code is contributed by Nidhi goel.  
JavaScript
// JavaScript program to combine modular equations // using Chinese Remainder Theorem // function that implements Extended euclidean // algorithm function extended_euclidean(a b){  if(a == 0){  let temp = [b 0 1];  return temp;  }  else{  let temp= extended_euclidean(b % a a);  let g = temp[0];  let y = temp[1];  let x = temp[2];  temp[0] = g;  temp[1] = x - (Math.floor(b/a) * y);  temp[2] = y;  return temp;  }  let temp;  return temp; } // modular inverse driver function function modinv(a m){  let temp = extended_euclidean(a m);  let g = temp[0];  let x = temp[1];  let y = temp[2];    // Since we are taking the modulo of   // negative numbers so to have positive   // output of the modulo we use this formula.   let ans = x - (Math.floor(x/m) * m);  return ans; }   // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations function crt(m x) {    // We run this loop while the list of  // remainders has length greater than 1  while(1)  {    // temp1 will contain the new value   // of A. which is calculated according   // to the equation m1' * m1 * x0 + m0'  // * m0 * x1  let var1 = (modinv(m[1]m[0]));  let var2 = (modinv(m[0]m[1]) );  // cout << var1 << ' ' << var2 << endl;  let temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0];  // temp2 contains the value of the modulus  // in the new equation which will be the   // product of the modulii of the two  // equations that we are combining  let temp2 = m[0] * m[1];  // cout << temp1<< ' '<  // we then remove the first two elements  // from the list of remainders and replace  // it with the remainder value which will  // be temp1 % temp2  x.shift();  x.shift();  x.unshift(temp1 % temp2);  //we then remove the first two values from  //the list of modulii as we no longer require  // them and simply replace them with the new   // modulii that we calculated  m.shift();  m.shift();  m.unshift(temp2);  // once the list has only one element left  // we can break as it will only contain   // the value of our final remainder  if(x.length== 1){  break;  }  }    // returns the remainder of the final equation  return x[0]; } // driver segment let m = [4 7 9 11]; let x = [3 4 1 0]; console.log(crt(m x)); // The code is contributed by phasing17 

Izvade:

1243

Laika sarežģītība: O(l) kur l ir atlikumu saraksta lielums.

Kosmosa sarežģītība: O(1), jo mēs neizmantojam papildu vietu.

mantojums java

Šai teorēmai un algoritmam ir lieliski pielietojumi. Viena ļoti noderīga lietojumprogramma ir aprēķināšananCr% m kur m nav pirmskaitlis un Lūkasa teorēma nevar tieši piemērot. Šādā gadījumā mēs varam aprēķināt m primāros koeficientus un izmantot tos pa vienam kā moduli mūsunCr% m vienādojums, ko varam aprēķināt, izmantojot Lūkasa teorēmu, un pēc tam apvienot iegūtos vienādojumus kopā, izmantojot iepriekš parādīto ķīniešu atlikuma teorēmu.

Izveidojiet viktorīnu