logo

Visu apakškopu vidējā summa

Izmēģiniet to GfG Practice ' title= #practiceLinkDiv { display: none !important; }

Ņemot vērā N veselu skaitļu elementu masīvu arr[], uzdevums ir atrast visu šī masīva apakškopu vidējo summu.

java šķēle

Piemērs:   

Input : arr[] = [2 3 5]  
Output : 23.33
Explanation : Subsets with their average are
[2] average = 2/1 = 2
[3] average = 3/1 = 3
[5] average = 5/1 = 5
[2 3] average = (2+3)/2 = 2.5
[2 5] average = (2+5)/2 = 3.5
[3 5] average = (3+5)/2 = 4
[2 3 5] average = (2+3+5)/3 = 3.33
Sum of average of all subset is
2 + 3 + 5 + 2.5 + 3.5 + 4 + 3.33 = 23.33
Recommended Practice Visu apakškopu vidējā summa Izmēģiniet to!

Naiva pieeja: Naivs risinājums ir atkārtot visas iespējamās apakškopas, lai iegūtu an vidēji no tiem visiem un pēc tam pievienojiet tos pa vienam, taču tas prasīs eksponenciālu laiku un būs neiespējami lielākiem masīviem. 
Mēs varam iegūt modeli, ņemot piemēru  



arr = [a0 a1 a2 a3]  
sum of average =
a0/1 + a1/1 + a2/2 + a3/1 +
(a0+a1)/2 + (a0+a2)/2 + (a0+a3)/2 + (a1+a2)/2 +
(a1+a3)/2 + (a2+a3)/2 +
(a0+a1+a2)/3 + (a0+a2+a3)/3 + (a0+a1+a3)/3 +
(a1+a2+a3)/3 +
(a0+a1+a2+a3)/4
If S = (a0+a1+a2+a3) then above expression
can be rearranged as below
sum of average = (S)/1 + (3*S)/2 + (3*S)/3 + (S)/4

Koeficientu ar skaitītājiem var izskaidrot šādi, pieņemot, ka mēs atkārtojam apakškopas ar K elementiem, tad saucējs būs K un skaitītājs r*S, kur “r” norāda, cik reižu konkrēts masīva elements tiks pievienots, atkārtojot tāda paša izmēra apakškopas. Pārbaudot, mēs varam redzēt, ka r būs nCr(N - 1 n - 1), jo pēc viena elementa ievietošanas summācijā ir jāizvēlas (n - 1) elementi no (N - 1) elementiem, lai katram elementam būtu nCr(N - 1 n - 1) frekvence, vienlaikus ņemot vērā tāda paša izmēra apakškopas, jo visi elementi piedalās reižu laikā, un šī summēšanas frekvence būs vienāda ar S reižu skaitu. izteiksme. 

Zemāk esošajā kodā nCr tiek realizēts, izmantojot dinamiskās programmēšanas metodi vairāk par to varat lasīt šeit 

C++
// C++ program to get sum of average of all subsets #include    using namespace std; // Returns value of Binomial Coefficient C(n k) int nCr(int n int k) {  int C[n + 1][k + 1];  int i j;  // Calculate value of Binomial Coefficient in bottom  // up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= min(i k); j++) {  // Base Cases  if (j == 0 || j == i)  C[i][j] = 1;  // Calculate value using previously stored  // values  else  C[i][j] = C[i - 1][j - 1] + C[i - 1][j];  }  }  return C[n][k]; } // method returns sum of average of all subsets double resultOfAllSubsets(int arr[] int N) {  double result = 0.0; // Initialize result  // Find sum of elements  int sum = 0;  for (int i = 0; i < N; i++)  sum += arr[i];  // looping once for all subset of same size  for (int n = 1; n <= N; n++)  /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (double)(sum * (nCr(N - 1 n - 1))) / n;  return result; } // Driver code to test above methods int main() {  int arr[] = { 2 3 5 7 };  int N = sizeof(arr) / sizeof(int);  cout << resultOfAllSubsets(arr N) << endl;  return 0; } 
Java
// java program to get sum of // average of all subsets import java.io.*; class GFG {  // Returns value of Binomial  // Coefficient C(n k)  static int nCr(int n int k)  {  int C[][] = new int[n + 1][k + 1];  int i j;  // Calculate value of Binomial  // Coefficient in bottom up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= Math.min(i k); j++) {  // Base Cases  if (j == 0 || j == i)  C[i][j] = 1;  // Calculate value using  // previously stored values  else  C[i][j] = C[i - 1][j - 1] + C[i - 1][j];  }  }  return C[n][k];  }  // method returns sum of average of all subsets  static double resultOfAllSubsets(int arr[] int N)  {  // Initialize result  double result = 0.0;  // Find sum of elements  int sum = 0;  for (int i = 0; i < N; i++)  sum += arr[i];  // looping once for all subset of same size  for (int n = 1; n <= N; n++)  /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (double)(sum * (nCr(N - 1 n - 1))) / n;  return result;  }  // Driver code to test above methods  public static void main(String[] args)  {  int arr[] = { 2 3 5 7 };  int N = arr.length;  System.out.println(resultOfAllSubsets(arr N));  } } // This code is contributed by vt_m 
C#
// C# program to get sum of // average of all subsets using System; class GFG {    // Returns value of Binomial  // Coefficient C(n k)  static int nCr(int n int k)  {  int[ ] C = new int[n + 1 k + 1];  int i j;  // Calculate value of Binomial  // Coefficient in bottom up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= Math.Min(i k); j++)   {  // Base Cases  if (j == 0 || j == i)  C[i j] = 1;  // Calculate value using  // previously stored values  else  C[i j] = C[i - 1 j - 1] + C[i - 1 j];  }  }  return C[n k];  }  // method returns sum of average   // of all subsets  static double resultOfAllSubsets(int[] arr int N)  {  // Initialize result  double result = 0.0;  // Find sum of elements  int sum = 0;  for (int i = 0; i < N; i++)  sum += arr[i];  // looping once for all subset   // of same size  for (int n = 1; n <= N; n++)  /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (double)(sum * (nCr(N - 1 n - 1))) / n;  return result;  }  // Driver code to test above methods  public static void Main()  {  int[] arr = { 2 3 5 7 };  int N = arr.Length;  Console.WriteLine(resultOfAllSubsets(arr N));  } } // This code is contributed by Sam007 
JavaScript
<script>  // javascript program to get sum of  // average of all subsets    // Returns value of Binomial  // Coefficient C(n k)  function nCr(n k)  {  let C = new Array(n + 1);  for (let i = 0; i <= n; i++)   {  C[i] = new Array(k + 1);  for (let j = 0; j <= k; j++)   {  C[i][j] = 0;  }  }  let i j;    // Calculate value of Binomial  // Coefficient in bottom up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= Math.min(i k); j++) {  // Base Cases  if (j == 0 || j == i)  C[i][j] = 1;    // Calculate value using  // previously stored values  else  C[i][j] = C[i - 1][j - 1] + C[i - 1][j];  }  }  return C[n][k];  }    // method returns sum of average of all subsets  function resultOfAllSubsets(arr N)  {  // Initialize result  let result = 0.0;    // Find sum of elements  let sum = 0;  for (let i = 0; i < N; i++)  sum += arr[i];    // looping once for all subset of same size  for (let n = 1; n <= N; n++)    /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (sum * (nCr(N - 1 n - 1))) / n;    return result;  }    let arr = [ 2 3 5 7 ];  let N = arr.length;  document.write(resultOfAllSubsets(arr N));   </script> 
PHP
 // PHP program to get sum  // of average of all subsets // Returns value of Binomial // Coefficient C(n k) function nCr($n $k) { $C[$n + 1][$k + 1] = 0; $i; $j; // Calculate value of Binomial // Coefficient in bottom up manner for ($i = 0; $i <= $n; $i++) { for ($j = 0; $j <= min($i $k); $j++) { // Base Cases if ($j == 0 || $j == $i) $C[$i][$j] = 1; // Calculate value using  // previously stored values else $C[$i][$j] = $C[$i - 1][$j - 1] + $C[$i - 1][$j]; } } return $C[$n][$k]; } // method returns sum of // average of all subsets function resultOfAllSubsets($arr $N) { // Initialize result $result = 0.0; // Find sum of elements $sum = 0; for ($i = 0; $i < $N; $i++) $sum += $arr[$i]; // looping once for all  // subset of same size for ($n = 1; $n <= $N; $n++) /* each element occurs nCr(N-1   n-1) times while considering   subset of size n */ $result += (($sum * (nCr($N - 1 $n - 1))) / $n); return $result; } // Driver Code $arr = array( 2 3 5 7 ); $N = sizeof($arr) / sizeof($arr[0]); echo resultOfAllSubsets($arr $N) ; // This code is contributed by nitin mittal.  ?> 
Python3
# Python3 program to get sum # of average of all subsets # Returns value of Binomial # Coefficient C(n k) def nCr(n k): C = [[0 for i in range(k + 1)] for j in range(n + 1)] # Calculate value of Binomial  # Coefficient in bottom up manner for i in range(n + 1): for j in range(min(i k) + 1): # Base Cases if (j == 0 or j == i): C[i][j] = 1 # Calculate value using  # previously stored values else: C[i][j] = C[i-1][j-1] + C[i-1][j] return C[n][k] # Method returns sum of # average of all subsets def resultOfAllSubsets(arr N): result = 0.0 # Initialize result # Find sum of elements sum = 0 for i in range(N): sum += arr[i] # looping once for all subset of same size for n in range(1 N + 1): # each element occurs nCr(N-1 n-1) times while # considering subset of size n */ result += (sum * (nCr(N - 1 n - 1))) / n return result # Driver code  arr = [2 3 5 7] N = len(arr) print(resultOfAllSubsets(arr N)) # This code is contributed by Anant Agarwal. 

Izvade
63.75

Laika sarežģītība: O(n3)
Palīgtelpa: O(n2)

Efektīva pieeja: kosmosa optimizācija O(1)
Lai optimizētu iepriekš minētās pieejas telpas sarežģītību, mēs varam izmantot efektīvāku pieeju, kas novērš nepieciešamību pēc visas matricas C[][] lai saglabātu binomiālos koeficientus. Tā vietā mēs varam izmantot kombinēto formulu, lai vajadzības gadījumā tieši aprēķinātu binomiālo koeficientu.

Ieviešanas soļi:

  • Atkārtojiet masīva elementus un aprēķiniet visu elementu summu.
  • Atkārtojiet katru apakškopas lielumu no 1 līdz N.
  • Aprēķiniet cilpas iekšpusē vidēji no elementu summas, kas reizināta ar apakškopas lieluma binomiālo koeficientu. Pievienojiet rezultātam aprēķināto vidējo.
  • Atgriezt gala rezultātu.

Īstenošana:

C++
#include    using namespace std; // Method to calculate binomial coefficient C(n k) int binomialCoeff(int n int k) {  int res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (int i = 0; i < k; i++)  {  res *= (n - i);  res /= (i + 1);  }  return res; } // Method to calculate the sum of the average of all subsets double resultOfAllSubsets(int arr[] int N) {  double result = 0.0;  int sum = 0;  // Calculate the sum of elements  for (int i = 0; i < N; i++)  sum += arr[i];  // Loop for each subset size  for (int n = 1; n <= N; n++)  result += (double)(sum * binomialCoeff(N - 1 n - 1)) / n;  return result; } // Driver code to test the above methods int main() {  int arr[] = { 2 3 5 7 };  int N = sizeof(arr) / sizeof(int);  cout << resultOfAllSubsets(arr N) << endl;  return 0; } 
Java
import java.util.Arrays; public class Main {  // Method to calculate binomial coefficient C(n k)  static int binomialCoeff(int n int k) {  int res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (int i = 0; i < k; i++) {  res *= (n - i);  res /= (i + 1);  }  return res;  }  // Method to calculate the sum of the average of all subsets  static double resultOfAllSubsets(int arr[] int N) {  double result = 0.0;  int sum = 0;  // Calculate the sum of elements  for (int i = 0; i < N; i++)  sum += arr[i];  // Loop for each subset size  for (int n = 1; n <= N; n++)  result += (double) (sum * binomialCoeff(N - 1 n - 1)) / n;  return result;  }  // Driver code to test the above methods  public static void main(String[] args) {  int arr[] = {2 3 5 7};  int N = arr.length;  System.out.println(resultOfAllSubsets(arr N));  } } 
C#
using System; public class MainClass {  // Method to calculate binomial coefficient C(n k)  static int BinomialCoeff(int n int k)  {  int res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (int i = 0; i < k; i++)  {  res *= (n - i);  res /= (i + 1);  }  return res;  }  // Method to calculate the sum of the average of all subsets  static double ResultOfAllSubsets(int[] arr int N)  {  double result = 0.0;  int sumVal = 0;  // Calculate the sum of elements  for (int i = 0; i < N; i++)  sumVal += arr[i];  // Loop for each subset size  for (int n = 1; n <= N; n++)  result += (double)(sumVal * BinomialCoeff(N - 1 n - 1)) / n;  return result;  }  // Driver code to test the above methods  public static void Main()  {  int[] arr = { 2 3 5 7 };  int N = arr.Length;  Console.WriteLine(ResultOfAllSubsets(arr N));  } } 
JavaScript
// Function to calculate binomial coefficient C(n k) function binomialCoeff(n k) {  let res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (let i = 0; i < k; i++) {  res *= (n - i);  res /= (i + 1);  }  return res; } // Function to calculate the sum of the average of all subsets function resultOfAllSubsets(arr) {  let result = 0.0;  let sum = arr.reduce((acc val) => acc + val 0);  // Loop for each subset size  for (let n = 1; n <= arr.length; n++) {  result += (sum * binomialCoeff(arr.length - 1 n - 1)) / n;  }  return result; } const arr = [2 3 5 7]; console.log(resultOfAllSubsets(arr)); 
Python3
# Method to calculate binomial coefficient C(n k) def binomialCoeff(n k): res = 1 # Since C(n k) = C(n n-k) if k > n - k: k = n - k # Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for i in range(k): res *= (n - i) res //= (i + 1) return res # Method to calculate the sum of the average of all subsets def resultOfAllSubsets(arr N): result = 0.0 sum_val = 0 # Calculate the sum of elements for i in range(N): sum_val += arr[i] # Loop for each subset size for n in range(1 N + 1): result += (sum_val * binomialCoeff(N - 1 n - 1)) / n return result # Driver code to test the above methods arr = [2 3 5 7] N = len(arr) print(resultOfAllSubsets(arr N)) 


Izvade

63.75

Laika sarežģītība: O(n^2)
Palīgtelpa: O(1)



 

Izveidojiet viktorīnu