Ņemot vērā mazu veselu skaitli N izdrukāt visas vienotības saknes līdz 6 nozīmīgiem cipariem. Mums principā jāatrod visas X vienādojuma saknesn- 1.
Piemēri:
Input : n = 1 Output : 1.000000 + i 0.000000 x - 1 = 0 has only one root i.e. 1 Input : 2 Output : 1.000000 + i 0.000000 -1.000000 + i 0.000000 x2 - 1 = 0 has 2 distinct roots i.e. 1 and -1
Jebkurš sarežģīts skaitlis tiek uzskatīts par vienotības sakni, ja tas dod 1, ja to palielina pie zināmas enerģijas.
Vienotības sakne ir jebkurš sarežģīts skaitlis, ka tas dod 1, ja to paceltu ar jaudu n.
Mathematically An nth root of unity where n is a positive integer (i.e. n = 1 2 3 …) is a number z satisfying the equation z^n = 1 or z^n - 1 = 0
Mēs varam izmantot De Moivre formula šeit
( Cos x + i Sin x )^k = Cos kx + i Sin kx Setting x = 2*pi/n we can obtain all the nth roots of unity using the fact that Nth roots are set of numbers given by Cos (2*pi*k/n) + i Sin(2*pi*k/n) Where 0 <= k < n
Izmantojot iepriekš minēto faktu, mēs varam viegli izdrukāt visas vienotības saknes!
java Būla virkne
Zemāk ir programma tam pašam.
C++// C++ program to print n'th roots of unity #include using namespace std; // This function receives an integer n and prints // all the nth roots of unity void printRoots(int n) { // theta = 2*pi/n double theta = M_PI*2/n; // print all nth roots with 6 significant digits for(int k=0; k<n; k++) { // calculate the real and imaginary part of root double real = cos(k*theta); double img = sin(k*theta); // Print real and imaginary parts printf('%.6f' real); img >= 0? printf(' + i '): printf(' - i '); printf('%.6fn' abs(img)); } } // Driver function to check the program int main() { printRoots(1); cout << endl; printRoots(2); cout << endl; printRoots(3); return 0; }
Java // Java program to print n'th roots of unity import java.io.*; class GFG { // This function receives an integer n and prints // all the nth roots of unity static void printRoots(int n) { // theta = 2*pi/n double theta = 3.14*2/n; // print all nth roots with 6 significant digits for(int k=0; k<n; k++) { // calculate the real and imaginary part of root double real = Math.cos(k*theta); double img = Math.sin(k*theta); // Print real and imaginary parts System.out.println(real); if (img >= 0) System.out.println(' + i '); else System.out.println(' - i '); System.out.println(Math.abs(img)); } } // Driver function to check the program public static void main (String[] args) { printRoots(1); //System.out.println(); printRoots(2); //System.out.println(); printRoots(3); } } // This code is contributed by Raj
Python3 # Python3 program to print n'th roots of unity import math # This function receives an integer n and prints # all the nth roots of unity def printRoots(n): # theta = 2*pi/n theta = math.pi * 2 / n # print all nth roots with 6 significant digits for k in range(0 n): # calculate the real and imaginary part of root real = math.cos(k * theta) img = math.sin(k * theta) # Print real and imaginary parts print(real end=' ') if(img >= 0): print(' + i ' end=' ') else: print(' - i ' end=' ') print(abs(img)) # Driver function to check the program if __name__=='__main__': printRoots(1) printRoots(2) printRoots(3) # This code is contributed by # Sanjit_Prasad
C# // C# program to print n'th roots of unity using System; class GFG { // This function receives an integer n and prints // all the nth roots of unity static void printRoots(int n) { // theta = 2*pi/n double theta = 3.14*2/n; // print all nth roots with 6 significant digits for(int k=0; k<n; k++) { // calculate the real and imaginary part of root double real = Math.Cos(k*theta); double img = Math.Sin(k*theta); // Print real and imaginary parts Console.Write(real); if (img >= 0) Console.Write(' + i '); else Console.Write(' - i '); Console.WriteLine(Math.Abs(img)); } } // Driver function to check the program static void Main() { printRoots(1); printRoots(2); printRoots(3); } } // This code is contributed by mits
PHP // PHP program to print n'th roots of unity // This function receives an integer n // and prints all the nth roots of unity function printRoots($n) { // theta = 2*pi/n $theta = pi() * 2 / $n; // print all nth roots with 6 // significant digits for($k = 0; $k < $n; $k++) { // calculate the real and imaginary // part of root $real = cos($k * $theta); $img = sin($k * $theta); // Print real and imaginary parts print(round($real 6)); $img >= 0 ? print(' + i '): print(' - i '); printf(round(abs($img) 6) . 'n'); } } // Driver Code printRoots(1); printRoots(2); printRoots(3); // This code is contributed by mits ?> JavaScript <script> // javascript program to print n'th roots of unity // This function receives an integer n and prints // all the nth roots of unity function printRoots(n) { // theta = 2*pi/n var theta = (3.14*2/n); // print all nth roots with 6 significant digits for(k = 0; k < n; k++) { // calculate the real and imaginary part of root var real = Math.cos(k*theta); var img = Math.sin(k*theta); // Print real and imaginary parts document.write(real.toFixed(6)); if (img >= 0) document.write(' + i '); else document.write(' - i '); document.write(Math.abs(img).toFixed(6)+'
'); } } // Driver function to check the program printRoots(1); //document.write('
'); printRoots(2); //document.write('
'); printRoots(3); // This code is contributed by shikhasingrajput </script>
Izlaide:
1.000000 + i 0.000000 1.000000 + i 0.000000 -1.000000 + i 0.000000 1.000000 + i 0.000000 -0.500000 + i 0.866025 -0.500000 - i 0.866025
Atsauces: Wikipedia