Šajā sadaļā mēs rakstīsim Java programmas, lai noteiktu skaitļa jaudu. Lai iegūtu skaitļa jaudu, reiziniet skaitli ar tā eksponentu.
Piemērs:
Pieņemsim, ka bāze ir 5 un eksponents ir 4. Lai iegūtu skaitļa jaudu, reiziniet to ar sevi četras reizes, t.i. (5 * 5 * 5 * 5 = 625).
Kā noteikt skaitļa spēku?
- Bāze un eksponents ir jālasa vai jāinicializē.
- Paņemiet citu mainīgo jaudu un iestatiet to uz 1, lai saglabātu rezultātu.
- Reiziniet bāzi ar jaudu un saglabājiet rezultātu pakāpē, izmantojot for vai while cilpu.
- Atkārtojiet 3. darbību, līdz eksponents ir vienāds ar nulli.
- Izdrukājiet izvadi.
Metodes skaitļa spēka noteikšanai
Ir vairākas metodes skaitļa jaudas noteikšanai:
sarakstu kārtot java
- Java for Loop izmantošana
- Java izmantošana cikla laikā
- Rekursijas izmantošana
- Izmantojot Math.pow() metodi
- Izmantojot bitu manipulācijas
1. Java for Loop izmantošana
Cilpu for var izmantot, lai aprēķinātu skaitļa jaudu, atkārtoti reizinot bāzi ar sevi.
PowerOfNumber1.java
public class PowerOfNumber1 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; for (int i = 0; i <exponent; i++) { result *="base;" } system.out.println(base + ' raised to the power of exponent is result); < pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>2. Using Java while Loop</h3> <p>A while loop may similarly be used to achieve the same result by multiplying the base many times.</p> <p> <strong>PowerOfNumber2.java</strong> </p> <pre> public class PowerOfNumber2 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; int power=3; while (exponent > 0) { result *= base; exponent--; } System.out.println(base + ' raised to the power of ' + power + ' is ' + result); } } </pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>3. Using Recursion:</h3> <p>Recursion is the process of breaking down an issue into smaller sub-problems. Here's an example of how recursion may be used to compute a number's power.</p> <p> <strong>PowerOfNumber3.java</strong> </p> <pre> public class PowerOfNumber3 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = power(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } public static int power(int base, int exponent) { if (exponent == 0) { return 1; } else { return base * power(base, exponent - 1); } } } </pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>4. Using Math.pow() Method</h3> <p>The java.lang package's Math.pow() function computes the power of an integer directly.</p> <p> <strong>PowerOfNumber4.java</strong> </p> <pre> public class PowerOfNumber4 { public static void main(String[] args) { double base = 2.0; double exponent = 3.0; double result = Math.pow(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 3.0 is 8.0 </pre> <h3>Handling Negative Exponents:</h3> <p>When dealing with negative exponents, the idea of reciprocal powers might be useful. For instance, x^(-n) equals 1/x^n. Here's an example of dealing with negative exponents.</p> <p> <strong>PowerOfNumber5.java</strong> </p> <pre> public class PowerOfNumber5 { public static void main(String[] args) { double base = 2.0; int exponent = -3; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { if (exponent >= 0) { return calculatePositivePower(base, exponent); } else { return 1.0 / calculatePositivePower(base, -exponent); } } static double calculatePositivePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of -3 is: 0.125 </pre> <h3>Optimizing for Integer Exponents:</h3> <p>When dealing with integer exponents, you may optimize the calculation by iterating only as many times as the exponent value. It decreases the number of unneeded multiplications.</p> <p> <strong>PowerOfNumber6.java</strong> </p> <pre> public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent's binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;></pre></exponent;></pre></exponent;>
2. Java izmantošana cilpas laikā
Lai sasniegtu to pašu rezultātu, daudzkārt reizinot pamatni, var izmantot kamēr cilpu.
PowerOfNumber2.java
public class PowerOfNumber2 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; int power=3; while (exponent > 0) { result *= base; exponent--; } System.out.println(base + ' raised to the power of ' + power + ' is ' + result); } }
Izvade:
instalēt maven
2 raised to the power of 3 is 8
3. Recursion izmantošana:
Rekursija ir process, kurā problēma tiek sadalīta mazākās apakšproblēmās. Šeit ir piemērs tam, kā rekursiju var izmantot, lai aprēķinātu skaitļa jaudu.
PowerOfNumber3.java
public class PowerOfNumber3 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = power(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } public static int power(int base, int exponent) { if (exponent == 0) { return 1; } else { return base * power(base, exponent - 1); } } }
Izvade:
2 raised to the power of 3 is 8
4. Izmantojot Math.pow() metodi
Java.lang pakotnes funkcija Math.pow() tieši aprēķina vesela skaitļa jaudu.
PowerOfNumber4.java
Java 8 funkcijas
public class PowerOfNumber4 { public static void main(String[] args) { double base = 2.0; double exponent = 3.0; double result = Math.pow(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } }
Izvade:
2.0 raised to the power of 3.0 is 8.0
Negatīvo eksponentu apstrāde:
Strādājot ar negatīviem eksponentiem, ideja par savstarpējām spējām varētu būt noderīga. Piemēram, x^(-n) ir vienāds ar 1/x^n. Šeit ir piemērs, kā rīkoties ar negatīviem eksponentiem.
PowerOfNumber5.java
public class PowerOfNumber5 { public static void main(String[] args) { double base = 2.0; int exponent = -3; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { if (exponent >= 0) { return calculatePositivePower(base, exponent); } else { return 1.0 / calculatePositivePower(base, -exponent); } } static double calculatePositivePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of -3 is: 0.125 </pre> <h3>Optimizing for Integer Exponents:</h3> <p>When dealing with integer exponents, you may optimize the calculation by iterating only as many times as the exponent value. It decreases the number of unneeded multiplications.</p> <p> <strong>PowerOfNumber6.java</strong> </p> <pre> public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent's binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;></pre></exponent;>
Optimizēšana veselu skaitļu eksponentiem:
Strādājot ar veselu skaitļu eksponentiem, jūs varat optimizēt aprēķinu, atkārtojot tikai tik reižu, cik eksponenta vērtība. Tas samazina nevajadzīgo reizinājumu skaitu.
PowerOfNumber6.java
public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent's binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;>
5. Bitu manipulāciju izmantošana bināro eksponentu aprēķināšanai:
Bitu manipulācijas var izmantot, lai labāk uzlabotu veselo skaitļu eksponentus. Lai veiktu mazāk reizināšanas, var izmantot eksponenta bināro attēlojumu.
10 no 50
PowerOfNumber7.java
public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } }
Izvade:
2.0 raised to the power of 5 is: 32.0