logo

Skaitļa spēks Java valodā

Šajā sadaļā mēs rakstīsim Java programmas, lai noteiktu skaitļa jaudu. Lai iegūtu skaitļa jaudu, reiziniet skaitli ar tā eksponentu.

Piemērs:

Pieņemsim, ka bāze ir 5 un eksponents ir 4. Lai iegūtu skaitļa jaudu, reiziniet to ar sevi četras reizes, t.i. (5 * 5 * 5 * 5 = 625).

Kā noteikt skaitļa spēku?

  • Bāze un eksponents ir jālasa vai jāinicializē.
  • Paņemiet citu mainīgo jaudu un iestatiet to uz 1, lai saglabātu rezultātu.
  • Reiziniet bāzi ar jaudu un saglabājiet rezultātu pakāpē, izmantojot for vai while cilpu.
  • Atkārtojiet 3. darbību, līdz eksponents ir vienāds ar nulli.
  • Izdrukājiet izvadi.

Metodes skaitļa spēka noteikšanai

Ir vairākas metodes skaitļa jaudas noteikšanai:

sarakstu kārtot java
  1. Java for Loop izmantošana
  2. Java izmantošana cikla laikā
  3. Rekursijas izmantošana
  4. Izmantojot Math.pow() metodi
  5. Izmantojot bitu manipulācijas

1. Java for Loop izmantošana

Cilpu for var izmantot, lai aprēķinātu skaitļa jaudu, atkārtoti reizinot bāzi ar sevi.

PowerOfNumber1.java

 public class PowerOfNumber1 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; for (int i = 0; i <exponent; i++) { result *="base;" } system.out.println(base + ' raised to the power of exponent is result); < pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>2. Using Java while Loop</h3> <p>A while loop may similarly be used to achieve the same result by multiplying the base many times.</p> <p> <strong>PowerOfNumber2.java</strong> </p> <pre> public class PowerOfNumber2 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; int power=3; while (exponent &gt; 0) { result *= base; exponent--; } System.out.println(base + &apos; raised to the power of &apos; + power + &apos; is &apos; + result); } } </pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>3. Using Recursion:</h3> <p>Recursion is the process of breaking down an issue into smaller sub-problems. Here&apos;s an example of how recursion may be used to compute a number&apos;s power.</p> <p> <strong>PowerOfNumber3.java</strong> </p> <pre> public class PowerOfNumber3 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = power(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is &apos; + result); } public static int power(int base, int exponent) { if (exponent == 0) { return 1; } else { return base * power(base, exponent - 1); } } } </pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>4. Using Math.pow() Method</h3> <p>The java.lang package&apos;s Math.pow() function computes the power of an integer directly.</p> <p> <strong>PowerOfNumber4.java</strong> </p> <pre> public class PowerOfNumber4 { public static void main(String[] args) { double base = 2.0; double exponent = 3.0; double result = Math.pow(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is &apos; + result); } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 3.0 is 8.0 </pre> <h3>Handling Negative Exponents:</h3> <p>When dealing with negative exponents, the idea of reciprocal powers might be useful. For instance, x^(-n) equals 1/x^n. Here&apos;s an example of dealing with negative exponents.</p> <p> <strong>PowerOfNumber5.java</strong> </p> <pre> public class PowerOfNumber5 { public static void main(String[] args) { double base = 2.0; int exponent = -3; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { if (exponent &gt;= 0) { return calculatePositivePower(base, exponent); } else { return 1.0 / calculatePositivePower(base, -exponent); } } static double calculatePositivePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of -3 is: 0.125 </pre> <h3>Optimizing for Integer Exponents:</h3> <p>When dealing with integer exponents, you may optimize the calculation by iterating only as many times as the exponent value. It decreases the number of unneeded multiplications.</p> <p> <strong>PowerOfNumber6.java</strong> </p> <pre> public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent&apos;s binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent &gt; 0) { if ((exponent &amp; 1) == 1) { result *= base; } base *= base; exponent &gt;&gt;= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;></pre></exponent;></pre></exponent;>

2. Java izmantošana cilpas laikā

Lai sasniegtu to pašu rezultātu, daudzkārt reizinot pamatni, var izmantot kamēr cilpu.

PowerOfNumber2.java

 public class PowerOfNumber2 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; int power=3; while (exponent &gt; 0) { result *= base; exponent--; } System.out.println(base + &apos; raised to the power of &apos; + power + &apos; is &apos; + result); } } 

Izvade:

instalēt maven
 2 raised to the power of 3 is 8 

3. Recursion izmantošana:

Rekursija ir process, kurā problēma tiek sadalīta mazākās apakšproblēmās. Šeit ir piemērs tam, kā rekursiju var izmantot, lai aprēķinātu skaitļa jaudu.

PowerOfNumber3.java

 public class PowerOfNumber3 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = power(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is &apos; + result); } public static int power(int base, int exponent) { if (exponent == 0) { return 1; } else { return base * power(base, exponent - 1); } } } 

Izvade:

 2 raised to the power of 3 is 8 

4. Izmantojot Math.pow() metodi

Java.lang pakotnes funkcija Math.pow() tieši aprēķina vesela skaitļa jaudu.

PowerOfNumber4.java

Java 8 funkcijas
 public class PowerOfNumber4 { public static void main(String[] args) { double base = 2.0; double exponent = 3.0; double result = Math.pow(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is &apos; + result); } } 

Izvade:

 2.0 raised to the power of 3.0 is 8.0 

Negatīvo eksponentu apstrāde:

Strādājot ar negatīviem eksponentiem, ideja par savstarpējām spējām varētu būt noderīga. Piemēram, x^(-n) ir vienāds ar 1/x^n. Šeit ir piemērs, kā rīkoties ar negatīviem eksponentiem.

PowerOfNumber5.java

 public class PowerOfNumber5 { public static void main(String[] args) { double base = 2.0; int exponent = -3; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { if (exponent &gt;= 0) { return calculatePositivePower(base, exponent); } else { return 1.0 / calculatePositivePower(base, -exponent); } } static double calculatePositivePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of -3 is: 0.125 </pre> <h3>Optimizing for Integer Exponents:</h3> <p>When dealing with integer exponents, you may optimize the calculation by iterating only as many times as the exponent value. It decreases the number of unneeded multiplications.</p> <p> <strong>PowerOfNumber6.java</strong> </p> <pre> public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent&apos;s binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent &gt; 0) { if ((exponent &amp; 1) == 1) { result *= base; } base *= base; exponent &gt;&gt;= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;></pre></exponent;>

Optimizēšana veselu skaitļu eksponentiem:

Strādājot ar veselu skaitļu eksponentiem, jūs varat optimizēt aprēķinu, atkārtojot tikai tik reižu, cik eksponenta vērtība. Tas samazina nevajadzīgo reizinājumu skaitu.

PowerOfNumber6.java

 public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent&apos;s binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent &gt; 0) { if ((exponent &amp; 1) == 1) { result *= base; } base *= base; exponent &gt;&gt;= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;>

5. Bitu manipulāciju izmantošana bināro eksponentu aprēķināšanai:

Bitu manipulācijas var izmantot, lai labāk uzlabotu veselo skaitļu eksponentus. Lai veiktu mazāk reizināšanas, var izmantot eksponenta bināro attēlojumu.

10 no 50

PowerOfNumber7.java

 public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + &apos; raised to the power of &apos; + exponent + &apos; is: &apos; + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent &gt; 0) { if ((exponent &amp; 1) == 1) { result *= base; } base *= base; exponent &gt;&gt;= 1; } return result; } } 

Izvade:

 2.0 raised to the power of 5 is: 32.0