Aprēķināt() metodi izmanto dažu statistikas datu aprēķināšanai, piemēram procentile, vidējais un std Series vai DataFrame skaitliskās vērtības. Tā analizē gan skaitliskās, gan objektu sērijas, kā arī jauktu datu tipu DataFrame kolonnu kopas.
autocad stiepšanas komanda
Sintakse
DataFrame.describe(percentiles=None, include=None, exclude=None)
Parametri
Atgriežas
Tas atgriež statistikas kopsavilkumu par Series un DataFrame.
Piemērs1
import pandas as pd import numpy as np a1 = pd.Series([1, 2, 3]) a1.describe()
Izvade
count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 dtype: float64
Piemērs2
import pandas as pd import numpy as np a1 = pd.Series(['p', 'q', 'q', 'r']) a1.describe()
Izvade
java iegūt pašreizējo datumu
count 4 unique 3 top q freq 2 dtype: object
3. piemērs
import pandas as pd import numpy as np a1 = pd.Series([1, 2, 3]) a1.describe() a1 = pd.Series(['p', 'q', 'q', 'r']) a1.describe() info = pd.DataFrame({'categorical': pd.Categorical(['s','t','u']), 'numeric': [1, 2, 3], 'object': ['p', 'q', 'r'] }) info.describe(include=[np.number]) info.describe(include=[np.object]) info.describe(include=['category'])
Izvade
categorical count 3 unique 3 top u freq 1
4. piemērs
import pandas as pd import numpy as np a1 = pd.Series([1, 2, 3]) a1.describe() a1 = pd.Series(['p', 'q', 'q', 'r']) a1.describe() info = pd.DataFrame({'categorical': pd.Categorical(['s','t','u']), 'numeric': [1, 2, 3], 'object': ['p', 'q', 'r'] }) info.describe() info.describe(include='all') info.numeric.describe() info.describe(include=[np.number]) info.describe(include=[np.object]) info.describe(include=['category']) info.describe(exclude=[np.number]) info.describe(exclude=[np.object])
Izvade
categorical numeric count 3 3.0 unique 3 NaN top u NaN freq 1 NaN mean NaN 2.0 std NaN 1.0 min NaN 1.0 25% NaN 1.5 50% NaN 2.0 75% NaN 2.5 max NaN 3.0