logo

Minimālais segmentu skaits septiņu segmentu displejā

Ciparu attēlošanai var izmantot septiņu segmentu displeju. Ņemot vērā masīvu n naturālie skaitļi. Uzdevums ir atrast masīvā skaitli, kas izmanto minimālo segmentu skaitu, lai parādītu skaitli. Ja vairākiem skaitļiem ir minimālais segmentu skaits, tiek izvadīts skaitlis ar mazāko indeksu.

Septiņu segmentu displejs' title=

Piemēri:   



Ievade: arr[] = { 1 2 3 4 5 }.
Izvade: 1
Paskaidrojums: Elements, kas izmanto minimālo segmentu skaitu, ir 1 (t.i., 2 segmenti)

Ievade: arr[] = { 489 206 745 123 756 }.
Izvade: 745
Paskaidrojums: Elements ar mazāko indeksu, kas izmanto minimālo segmentu skaitu, ir 745 (t.i., 12 segmenti)

Ideja ir iepriekš aprēķināt segmentu skaitu, ko izmanto cipari no 0 līdz 9, un saglabāt to. Tagad katram masīva elementam saskaitiet segmenta skaitu, ko izmanto katrs cipars. Pēc tam atrodiet elementu, kas izmanto minimālo segmentu skaitu.

Segmenta skaits, ko izmanto cipars: 
0 -> 6 
1 -> 2 
2 -> 5 
3 -> 5 
4 -> 4 
5 -> 5 
6 -> 6 
7 -> 3 
8 -> 7 
9 -> 6

C++
#include   using namespace std; // Precomputed values of segment used by digit 0 to 9. const int seg[10] = { 6 2 5 5 4 5 6 3 7 6}; // Return the number of segments used by x. int computeSegment(int x) {  if (x == 0)  return seg[0];  int count = 0;  // Finding sum of the segment used by  // each digit of a number.  while (x)  {  count += seg[x%10];  x /= 10;  }  return count; } int elementMinSegment(vector<int> arr int n) {  // Initialising the minimum segment and minimum  // number index.  int minseg = computeSegment(arr[0]);  int minindex = 0;  // Finding and comparing segment used  // by each number arr[i].  for (int i = 1; i < n; i++)  {  int temp = computeSegment(arr[i]);  // If arr[i] used less segment then update  // minimum segment and minimum number.  if (temp < minseg)  {  minseg = temp;  minindex = i;  }  }  return arr[minindex]; } int main() {  vector<int> arr = {489 206 745 123 756};  int n = arr.size();   cout << elementMinSegment(arr n) << endl;  return 0; } 
Java
import java.io.*; class GFG {   // Precomputed values of segment  // used by digit 0 to 9. static int []seg = { 6 2 5 5 4 5 6 3 7 6}; // Return the number of segments used by x. static int computeSegment(int x) {  if (x == 0)  return seg[0];  int count = 0;  // Finding sum of the segment used by  // each digit of a number.  while (x > 0)  {  count += seg[x % 10];  x /= 10;  }  return count; } static int elementMinSegment(int []arr int n) {  // Initialising the minimum segment   // and minimum number index.  int minseg = computeSegment(arr[0]);  int minindex = 0;  // Finding and comparing segment used  // by each number arr[i].  for (int i = 1; i < n; i++)  {  int temp = computeSegment(arr[i]);  // If arr[i] used less segment then update  // minimum segment and minimum number.  if (temp < minseg)  {  minseg = temp;  minindex = i;  }  }  return arr[minindex]; }  static public void main (String[] args)  {  int []arr = {489 206 745 123 756};  int n = arr.length;  System.out.println(elementMinSegment(arr n));  } } 
Python
# Precomputed values of segment # used by digit 0 to 9. seg = [6 2 5 5 4 5 6 3 7 6] # Return the number of # segments used by x. def computeSegment(x): if(x == 0): return seg[0] count = 0 # Finding sum of the segment  # used by each digit of a number. while(x): count += seg[x % 10] x = x // 10 return count # function to return minimum sum index def elementMinSegment(arr n): # Initialising the minimum  # segment and minimum number index. minseg = computeSegment(arr[0]) minindex = 0 # Finding and comparing segment # used by each number arr[i]. for i in range(1 n): temp = computeSegment(arr[i]) # If arr[i] used less segment # then update minimum segment # and minimum number. if(temp < minseg): minseg = temp minindex = i return arr[minindex] # Driver Code arr = [489 206 745 123 756] n = len(arr) # function print required answer print(elementMinSegment(arr n)) # This code is contributed by # Sanjit_Prasad 
C#
using System; class GFG{   // Precomputed values of segment // used by digit 0 to 9. static int []seg = new int[10]{ 6 2 5 5 4  5 6 3 7 6}; // Return the number of segments used by x. static int computeSegment(int x) {  if (x == 0)  return seg[0];  int count = 0;  // Finding sum of the segment used by  // each digit of a number.  while (x > 0)  {  count += seg[x % 10];  x /= 10;  }  return count; } static int elementMinSegment(int []arr int n) {  // Initialising the minimum segment  // and minimum number index.  int minseg = computeSegment(arr[0]);  int minindex = 0;  // Finding and comparing segment used  // by each number arr[i].  for (int i = 1; i < n; i++)  {  int temp = computeSegment(arr[i]);  // If arr[i] used less segment then update  // minimum segment and minimum number.  if (temp < minseg)  {  minseg = temp;  minindex = i;  }  }  return arr[minindex]; }  static public void Main()  {  int []arr = {489 206 745 123 756};  int n = arr.Length;  Console.WriteLine(elementMinSegment(arr n));  } } 
JavaScript
// Precomputed values of segment // used by digit 0 to 9. let seg = [ 6 2 5 5 4 5 6 3 7 6]; // Return the number of segments used by x. function computeSegment(x) {  if (x == 0)  return seg[0];  let count = 0;  // Finding sum of the segment used by  // each digit of a number.  while (x > 0)  {  count += seg[x % 10];  x = parseInt(x / 10 10);  }  return count; } function elementMinSegment(arr n) {    // Initialising the minimum segment  // and minimum number index.  let minseg = computeSegment(arr[0]);  let minindex = 0;  // Finding and comparing segment used  // by each number arr[i].  for(let i = 1; i < n; i++)  {  let temp = computeSegment(arr[i]);  // If arr[i] used less segment then update  // minimum segment and minimum number.  if (temp < minseg)  {  minseg = temp;  minindex = i;  }  }  return arr[minindex]; } // Driver code let arr = [ 489 206 745 123 756 ]; let n = arr.length; console.log(elementMinSegment(arr n)); 

Izvade
745

Laika sarežģītība: O(n * log 10 n)
Palīgtelpa: O(10)

Izveidojiet viktorīnu