logo

Matricas manipulācijas Python

Python matricu var ieviest kā 2D sarakstu vai 2D masīvu. Veidojot matricu no pēdējās, tiek dota papildu funkcionalitāte dažādu operāciju veikšanai matricā. Šīs operācijas un masīvs ir definēti modulī nejutīgs .

Darbība uz Matrix:



    1. add() :- Šī funkcija tiek izmantota, lai veiktu elementu matricas pievienošana . 2. subtract() :- Šī funkcija tiek izmantota, lai veiktu elementu viedās matricas atņemšana . 3. divide() :- Šī funkcija tiek izmantota, lai veiktu elementu viedās matricas dalījums .

Īstenošana:

Python








# Python code to demonstrate matrix operations> # add(), subtract() and divide()> > # importing numpy for matrix operations> import> numpy> > # initializing matrices> x>=> numpy.array([[>1>,>2>], [>4>,>5>]])> y>=> numpy.array([[>7>,>8>], [>9>,>10>]])> > # using add() to add matrices> print> (>'The element wise addition of matrix is : '>)> print> (numpy.add(x,y))> > # using subtract() to subtract matrices> print> (>'The element wise subtraction of matrix is : '>)> print> (numpy.subtract(x,y))> > # using divide() to divide matrices> print> (>'The element wise division of matrix is : '>)> print> (numpy.divide(x,y))>

>

>

Izvade:

The element wise addition of matrix is : [[ 8 10] [13 15]] The element wise subtraction of matrix is : [[-6 -6] [-5 -5]] The element wise division of matrix is : [[ 0.14285714 0.25 ] [ 0.44444444 0.5 ]]>
    4. multiply() :- Šī funkcija tiek izmantota, lai veiktu elementu viedā matricas reizināšana . 5. dot() :- Šī funkcija tiek izmantota, lai aprēķinātu matricas reizināšanu, nevis elementu reizināšanu .

Python


kā java pārvērst virkni par veselu skaitli



# Python code to demonstrate matrix operations> # multiply() and dot()> > # importing numpy for matrix operations> import> numpy> > # initializing matrices> x>=> numpy.array([[>1>,>2>], [>4>,>5>]])> y>=> numpy.array([[>7>,>8>], [>9>,>10>]])> > # using multiply() to multiply matrices element wise> print> (>'The element wise multiplication of matrix is : '>)> print> (numpy.multiply(x,y))> > # using dot() to multiply matrices> print> (>'The product of matrices is : '>)> print> (numpy.dot(x,y))>

>

>

Izvade:

The element wise multiplication of matrix is : [[ 7 16] [36 50]] The product of matrices is : [[25 28] [73 82]]>
    6. sqrt() :- Šī funkcija tiek izmantota, lai aprēķinātu katra elementa kvadrātsakne no matricas. 7. summa(x,axis):- Šī funkcija tiek izmantota pievienojiet visus elementus matricā . Izvēles ass arguments aprēķina kolonnas summa, ja ass ir 0 un rindas summa, ja ass ir 1 . 8. T :- Šis arguments ir pieradis transponēt norādītā matrica.

Īstenošana:

Python




# Python code to demonstrate matrix operations> # sqrt(), sum() and 'T'> > # importing numpy for matrix operations> import> numpy> > # initializing matrices> x>=> numpy.array([[>1>,>2>], [>4>,>5>]])> y>=> numpy.array([[>7>,>8>], [>9>,>10>]])> > # using sqrt() to print the square root of matrix> print> (>'The element wise square root is : '>)> print> (numpy.sqrt(x))> > # using sum() to print summation of all elements of matrix> print> (>'The summation of all matrix element is : '>)> print> (numpy.>sum>(y))> > # using sum(axis=0) to print summation of all columns of matrix> print> (>'The column wise summation of all matrix is : '>)> print> (numpy.>sum>(y,axis>=>0>))> > # using sum(axis=1) to print summation of all columns of matrix> print> (>'The row wise summation of all matrix is : '>)> print> (numpy.>sum>(y,axis>=>1>))> > # using 'T' to transpose the matrix> print> (>'The transpose of given matrix is : '>)> print> (x.T)>

>

>

Izvade:

The element wise square root is : [[ 1. 1.41421356] [ 2. 2.23606798]] The summation of all matrix element is : 34 The column wise summation of all matrix is : [16 18] The row wise summation of all matrix is : [15 19] The transpose of given matrix is : [[1 4] [2 5]]>

Izmantojot ligzdotas cilpas:

Pieeja:

  • Definējiet matricas A un B.
  • Iegūstiet matricu rindu un kolonnu skaitu, izmantojot funkciju len().
  • Inicializējiet matricas C, D un E ar nullēm, izmantojot ligzdotas cilpas vai saraksta izpratni.
  • Izmantojiet ligzdotās cilpas vai saraksta izpratni, lai veiktu matricu saskaitīšanu, atņemšanu un dalīšanu pa elementiem.
  • Izdrukājiet iegūtās matricas C, D un E.

Python3




java nomaiņa

A>=> [[>1>,>2>],[>4>,>5>]]> B>=> [[>7>,>8>],[>9>,>10>]]> rows>=> len>(A)> cols>=> len>(A[>0>])> > # Element wise addition> C>=> [[>0> for> i>in> range>(cols)]>for> j>in> range>(rows)]> for> i>in> range>(rows):> >for> j>in> range>(cols):> >C[i][j]>=> A[i][j]>+> B[i][j]> print>(>'Addition of matrices: '>, C)> > # Element wise subtraction> D>=> [[>0> for> i>in> range>(cols)]>for> j>in> range>(rows)]> for> i>in> range>(rows):> >for> j>in> range>(cols):> >D[i][j]>=> A[i][j]>-> B[i][j]> print>(>'Subtraction of matrices: '>, D)> > # Element wise division> E>=> [[>0> for> i>in> range>(cols)]>for> j>in> range>(rows)]> for> i>in> range>(rows):> >for> j>in> range>(cols):> >E[i][j]>=> A[i][j]>/> B[i][j]> print>(>'Division of matrices: '>, E)>

>

>

Izvade

Addition of matrices: [[8, 10], [13, 15]] Subtraction of matrices: [[-6, -6], [-5, -5]] Division of matrices: [[0.14285714285714285, 0.25], [0.4444444444444444, 0.5]]>

Laika sarežģītība: O(n^2)
Telpas sarežģītība: O(n^2)