Affine šifrs ir monoalfabētiskā aizstāšanas šifra veids, kurā katrs alfabēta burts tiek kartēts ar tā ciparu ekvivalentu, kas šifrēts, izmantojot vienkāršu matemātisko funkciju, un pārveidots atpakaļ par burtu. Izmantotā formula nozīmē, ka katrs burts tiek šifrēts uz vienu citu burtu un atkal atpakaļ, kas nozīmē, ka šifrs būtībā ir standarta aizstāšanas šifrs ar noteikumu, kas nosaka, kurš burts kuram tiek nosūtīts.
Viss process ir balstīts uz darba modulo m (izmantotā alfabēta garumu). Afīnā šifrā m izmēra alfabēta burti vispirms tiek kartēti ar veseliem skaitļiem diapazonā no 0 … m-1.
Affine šifra “atslēga” sastāv no 2 cipariem, kurus sauksim par a un b. Šajā diskusijā tiek pieņemts, ka tiek izmantots 26 rakstzīmju alfabēts (m = 26). a ir jāizvēlas tā, lai tas būtu relatīvi galvenais pret m (t.i., a nedrīkst būt ar m kopēju faktoru).

kaudze java
Šifrēšana
Tas izmanto modulāro aritmētiku, lai pārveidotu veselu skaitli, kuram atbilst katrs vienkārša teksta burts, par citu veselu skaitli, kas atbilst šifrēta teksta burtam. Viena burta šifrēšanas funkcija ir
E ( x ) = ( a x + b ) mod m modulus m: size of the alphabet a and b: key of the cipher. a must be chosen such that a and m are coprime.
Atšifrēšana
Atšifrējot šifrētu tekstu, mums ir jāveic pretējas (vai apgrieztas) funkcijas šifrētajam tekstam, lai izgūtu vienkāršu tekstu. Atkal pirmais solis ir pārvērst katru no šifrētā teksta burtiem to veselos skaitļos. Atšifrēšanas funkcija ir
D ( x ) = a^-1 ( x - b ) mod m a^-1 : modular multiplicative inverse of a modulo m. i.e. it satisfies the equation 1 = a a^-1 mod m .
Lai atrastu reizināšanas inversu
Mums jāatrod skaitlis x, lai:
Ja mēs atrodam skaitli x tādu, ka vienādojums ir patiess, tad x ir a inverss, un mēs to saucam par a^-1. Vienkāršākais veids, kā atrisināt šo vienādojumu, ir meklēt katru no skaitļiem no 1 līdz 25 un redzēt, kurš no tiem atbilst vienādojumam.
[gxd] = gcd(am); % we can ignore g and d we dont need them x = mod(xm);
Ja jūs tagad reizinat x un a un samazinat rezultātu (mod 26), jūs saņemsiet atbildi 1. Atcerieties, ka šī ir tikai apgrieztā definīcija, t.i., ja a*x = 1 (mod 26), tad x ir a inverss (un a ir x inverss).
Piemērs:

Īstenošana:
C++//CPP program to illustrate Affine Cipher #include using namespace std; //Key values of a and b const int a = 17; const int b = 20; string encryptMessage(string msg) { ///Cipher Text initially empty string cipher = ''; for (int i = 0; i < msg.length(); i++) { // Avoid space to be encrypted if(msg[i]!=' ') /* applying encryption formula ( a x + b ) mod m {here x is msg[i] and m is 26} and added 'A' to bring it in range of ascii alphabet[ 65-90 | A-Z ] */ cipher = cipher + (char) ((((a * (msg[i]-'A') ) + b) % 26) + 'A'); else //else simply append space character cipher += msg[i]; } return cipher; } string decryptCipher(string cipher) { string msg = ''; int a_inv = 0; int flag = 0; //Find a^-1 (the multiplicative inverse of a //in the group of integers modulo m.) for (int i = 0; i < 26; i++) { flag = (a * i) % 26; //Check if (a*i)%26 == 1 //then i will be the multiplicative inverse of a if (flag == 1) { a_inv = i; } } for (int i = 0; i < cipher.length(); i++) { if(cipher[i]!=' ') /*Applying decryption formula a^-1 ( x - b ) mod m {here x is cipher[i] and m is 26} and added 'A' to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */ msg = msg + (char) (((a_inv * ((cipher[i]+'A' - b)) % 26)) + 'A'); else //else simply append space character msg += cipher[i]; } return msg; } //Driver Program int main(void) { string msg = 'AFFINE CIPHER'; //Calling encryption function string cipherText = encryptMessage(msg); cout << 'Encrypted Message is : ' << cipherText<<endl; //Calling Decryption function cout << 'Decrypted Message is: ' << decryptCipher(cipherText); return 0; }
Java // Java program to illustrate Affine Cipher class GFG { // Key values of a and b static int a = 17; static int b = 20; static String encryptMessage(char[] msg) { /// Cipher Text initially empty String cipher = ''; for (int i = 0; i < msg.length; i++) { // Avoid space to be encrypted /* applying encryption formula ( a x + b ) mod m {here x is msg[i] and m is 26} and added 'A' to bring it in range of ascii alphabet[ 65-90 | A-Z ] */ if (msg[i] != ' ') { cipher = cipher + (char) ((((a * (msg[i] - 'A')) + b) % 26) + 'A'); } else // else simply append space character { cipher += msg[i]; } } return cipher; } static String decryptCipher(String cipher) { String msg = ''; int a_inv = 0; int flag = 0; //Find a^-1 (the multiplicative inverse of a //in the group of integers modulo m.) for (int i = 0; i < 26; i++) { flag = (a * i) % 26; // Check if (a*i)%26 == 1 // then i will be the multiplicative inverse of a if (flag == 1) { a_inv = i; } } for (int i = 0; i < cipher.length(); i++) { /*Applying decryption formula a^-1 ( x - b ) mod m {here x is cipher[i] and m is 26} and added 'A' to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */ if (cipher.charAt(i) != ' ') { msg = msg + (char) (((a_inv * ((cipher.charAt(i) + 'A' - b)) % 26)) + 'A'); } else //else simply append space character { msg += cipher.charAt(i); } } return msg; } // Driver code public static void main(String[] args) { String msg = 'AFFINE CIPHER'; // Calling encryption function String cipherText = encryptMessage(msg.toCharArray()); System.out.println('Encrypted Message is : ' + cipherText); // Calling Decryption function System.out.println('Decrypted Message is: ' + decryptCipher(cipherText)); } } // This code contributed by Rajput-Ji
Python # Implementation of Affine Cipher in Python # Extended Euclidean Algorithm for finding modular inverse # eg: modinv(7 26) = 15 def egcd(a b): xy uv = 01 10 while a != 0: q r = b//a b%a m n = x-u*q y-v*q ba xy uv = ar uv mn gcd = b return gcd x y def modinv(a m): gcd x y = egcd(a m) if gcd != 1: return None # modular inverse does not exist else: return x % m # affine cipher encryption function # returns the cipher text def affine_encrypt(text key): ''' C = (a*P + b) % 26 ''' return ''.join([ chr((( key[0]*(ord(t) - ord('A')) + key[1] ) % 26) + ord('A')) for t in text.upper().replace(' ' '') ]) # affine cipher decryption function # returns original text def affine_decrypt(cipher key): ''' P = (a^-1 * (C - b)) % 26 ''' return ''.join([ chr((( modinv(key[0] 26)*(ord(c) - ord('A') - key[1])) % 26) + ord('A')) for c in cipher ]) # Driver Code to test the above functions def main(): # declaring text and key text = 'AFFINE CIPHER' key = [17 20] # calling encryption function affine_encrypted_text = affine_encrypt(text key) print('Encrypted Text: {}'.format( affine_encrypted_text )) # calling decryption function print('Decrypted Text: {}'.format ( affine_decrypt(affine_encrypted_text key) )) if __name__ == '__main__': main() # This code is contributed by # Bhushan Borole
C# // C# program to illustrate Affine Cipher using System; class GFG { // Key values of a and b static int a = 17; static int b = 20; static String encryptMessage(char[] msg) { /// Cipher Text initially empty String cipher = ''; for (int i = 0; i < msg.Length; i++) { // Avoid space to be encrypted /* applying encryption formula ( a x + b ) mod m {here x is msg[i] and m is 26} and added 'A' to bring it in range of ascii alphabet[ 65-90 | A-Z ] */ if (msg[i] != ' ') { cipher = cipher + (char) ((((a * (msg[i] - 'A')) + b) % 26) + 'A'); } else // else simply append space character { cipher += msg[i]; } } return cipher; } static String decryptCipher(String cipher) { String msg = ''; int a_inv = 0; int flag = 0; //Find a^-1 (the multiplicative inverse of a //in the group of integers modulo m.) for (int i = 0; i < 26; i++) { flag = (a * i) % 26; // Check if (a*i)%26 == 1 // then i will be the multiplicative inverse of a if (flag == 1) { a_inv = i; } } for (int i = 0; i < cipher.Length; i++) { /*Applying decryption formula a^-1 ( x - b ) mod m {here x is cipher[i] and m is 26} and added 'A' to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */ if (cipher[i] != ' ') { msg = msg + (char) (((a_inv * ((cipher[i] + 'A' - b)) % 26)) + 'A'); } else //else simply append space character { msg += cipher[i]; } } return msg; } // Driver code public static void Main(String[] args) { String msg = 'AFFINE CIPHER'; // Calling encryption function String cipherText = encryptMessage(msg.ToCharArray()); Console.WriteLine('Encrypted Message is : ' + cipherText); // Calling Decryption function Console.WriteLine('Decrypted Message is: ' + decryptCipher(cipherText)); } } /* This code contributed by PrinciRaj1992 */
JavaScript //Javascript program to illustrate Affine Cipher //Key values of a and b let a = 17; let b = 20; function encryptMessage(msg) { ///Cipher Text initially empty let cipher = ''; for (let i = 0; i < msg.length; i++) { // Avoid space to be encrypted if(msg[i] !=' ') /* applying encryption formula ( a x + b ) mod m {here x is msg[i] and m is 26} and added 'A' to bring it in range of ascii alphabet[ 65-90 | A-Z ] */ cipher = cipher + String.fromCharCode((((a * (msg[i].charCodeAt(0)-65) ) + b) % 26) + 65); else //else simply append space character cipher += msg[i]; } return cipher; } function decryptCipher(cipher) { let msg = ''; let a_inv = 0; let flag = 0; //Find a^-1 (the multiplicative inverse of a //in the group of integers modulo m.) for (let i = 0; i < 26; i++) { flag = (a * i) % 26; //Check if (a*i)%26 == 1 //then i will be the multiplicative inverse of a if (flag == 1) { a_inv = i; } } for (let i = 0; i < cipher.length; i++) { if(cipher[i]!=' ') /*Applying decryption formula a^-1 ( x - b ) mod m {here x is cipher[i] and m is 26} and added 'A' to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */ msg = msg + String.fromCharCode(((a_inv * ((cipher[i].charCodeAt(0)+65 - b)) % 26)) + 65); else //else simply append space character msg += cipher[i]; } return msg; } //Driver Program let msg = 'AFFINE CIPHER'; //Calling encryption function let cipherText = encryptMessage(msg); console.log('Encrypted Message is : ' + cipherText); //Calling Decryption function console.log('Decrypted Message is: ' + decryptCipher(cipherText)); // The code is contributed by Arushi Jindal.
Izvade
Encrypted Message is : UBBAHK CAPJKX Decrypted Message is: AFFINE CIPHER
Izveidojiet viktorīnu