logo

Dijkstras algoritms Java

Dijkstra algoritms ir viens no svarīgākajiem algoritmiem, lai atrastu īsāko ceļu no avota mezgla uz galamērķa mezglu. Tā izmanto mantkārīgo pieeju, lai atrastu īsāko ceļu. Dijkstra algoritma koncepcija ir atrast īsāko attālumu (ceļu), sākot no avota punkta, un ignorēt garākos attālumus, veicot atjaunināšanu.

Šajā sadaļā mēs ieviesīsim Dijkstra algoritms Java programmā . Mēs arī apspriedīsim tā izmantošanu un ierobežojumus.

Dijkstra algoritma soļi

1. darbība: Visi mezgli ir jāatzīmē kā neapmeklēti.

2. darbība: Visiem mezgliem jābūt inicializētiem ar “bezgalīgu” (lielu skaitļu) attālumu. Sākuma mezglam jābūt inicializētam ar nulli.

3. darbība: Atzīmējiet sākuma mezglu kā pašreizējo mezglu.

4. darbība: No pašreizējā mezgla analizējiet visus tā kaimiņus, kas vēl nav apmeklēti, un aprēķiniet to attālumus, pievienojot malas svaru, kas nosaka savienojumu starp pašreizējo mezglu un kaimiņu mezglu ar pašreizējā mezgla pašreizējo attālumu.

5. darbība: Tagad salīdziniet nesen aprēķināto attālumu ar attālumu, kas piešķirts blakus esošajam mezglam, un uzskatiet to par kaimiņu mezgla pašreizējo attālumu,

6. darbība: Pēc tam tiek apskatīti pašreizējā mezgla, kas nav apmeklēts, apkārtējie kaimiņi, un pašreizējie mezgli tiek atzīmēti kā apmeklēti.

7. darbība: Kad beigu mezgls ir atzīmēts kā apmeklēts, tad algoritms savu darbu ir paveicis; citādi,

8. darbība: Izvēlieties neapmeklēto mezglu, kuram ir piešķirts minimālais attālums, un uzskatiet to par jauno pašreizējo mezglu. Pēc tam sāciet vēlreiz no 4. darbības.

Dijkstra algoritma pseido kods

 Method Dijkstra(G, s): // G is graph, s is source distance[s] -&gt; 0 // Distance from the source to source is always 0 for every vertex vx in the Graph G: // doing the initialization work { if vx ? s { // Unknown distance function from source to each node set to infinity distance[vx] -&gt; infinity } add vx to Queue Q // Initially, all the nodes are in Q } // The while loop Untill the Q is not empty: { // During the first run, this vertex is the source or starting node vx = vertex in Q with the minimum distance[vx] delete vx from Q } // where the neighbor ux has not been deleted yet from Q. for each neighbor ux of vx: alt = distance[vx] + length(vx, ux) // A path with lesser weight (shorter path), to ux is found if alt <distance[ux]: distance[ux]="alt" updating the distance of ux return dist[] end method < pre> <h2>Implementation of Dijkstra Algorithm</h2> <p>The following code implements the Dijkstra Algorithm using the diagram mentioned below.</p> <img src="//techcodeview.com/img/java-tutorial/65/dijkstra-algorithm-java.webp" alt="Dijkstra Algorithm Java"> <p> <strong>FileName:</strong> DijkstraExample.java</p> <pre> // A Java program that finds the shortest path using Dijkstra&apos;s algorithm. // The program uses the adjacency matrix for the representation of a graph // import statements import java.util.*; import java.io.*; import java.lang.*; public class DijkstraExample { // A utility method to compute the vertex with the distance value, which is minimum // from the group of vertices that has not been included yet static final int totalVertex = 9; int minimumDistance(int distance[], Boolean spSet[]) { // Initialize min value int m = Integer.MAX_VALUE, m_index = -1; for (int vx = 0; vx <totalvertex; 0 1 3 4 5 6 9 vx++) { if (spset[vx]="=" false && distance[vx] <="m)" m="distance[vx];" m_index="vx;" } return m_index; a utility method to display the built distance array void printsolution(int distance[], int n) system.out.println('the shortest from source 0th node all other nodes are: '); for (int j="0;" n; j++) system.out.println('to ' + is: distance[j]); that does implementation of dijkstra's path algorithm graph is being represented using adjacency matrix representation dijkstra(int graph[][], s) distance[]="new" int[totalvertex]; output distance[i] holds s spset[j] will be true vertex included in tree or finalized boolean spset[]="new" boolean[totalvertex]; initializing distances as infinite and totalvertex; distance[j]="Integer.MAX_VALUE;" itself always distance[s]="0;" compute given vertices cnt="0;" totalvertex - 1; cnt++) choose minimum set not yet processed. ux equal first iteration. spset); choosed marked it means processed spset[ux]="true;" updating value neighboring vertex. vx="0;" update only spset, there an edge vx, total weight through lesser than current (!spset[vx] graph[ux][vx] !="-1" distance[ux] distance[vx]) graph[ux][vx]; build printsolution(distance, totalvertex); main public static main(string argvs[]) * created. arr[x][y]="-" means, no any connects x y directly grph[][]="new" int[][] -1, 3, 7, -1 }, 10, 6, 2, 8, 13, 9, 4, 1, 5, }; creating object class dijkstraexample obj="new" dijkstraexample(); obj.dijkstra(grph, 0); pre> <p> <strong>Output:</strong> </p> <pre> The shortest Distance from source 0th node to all other nodes are: To 0 the shortest distance is: 0 To 1 the shortest distance is: 3 To 2 the shortest distance is: 8 To 3 the shortest distance is: 10 To 4 the shortest distance is: 18 To 5 the shortest distance is: 10 To 6 the shortest distance is: 9 To 7 the shortest distance is: 7 To 8 the shortest distance is: 7 </pre> <p>The time complexity of the above code is O(V<sup>2</sup>), where V is the total number of vertices present in the graph. Such time complexity does not bother much when the graph is smaller but troubles a lot when the graph is of larger size. Therefore, we have to do the optimization to reduce this complexity. With the help of the priority queue, we can decrease the time complexity. Observe the following code that is written for the graph depicted above.</p> <p> <strong>FileName:</strong> DijkstraExample1.java</p> <pre> // Java Program shows the implementation Dijkstra&apos;s Algorithm // Using the Priority Queue // import statement import java.util.*; // Main class DijkstraExample1 public class DijkstraExample1 { // Member variables of the class private int distance[]; private Set settld; private PriorityQueue pQue; // Total count of the vertices private int totalNodes; List<list> adjacent; // Constructor of the class public DijkstraExample1(int totalNodes) { this.totalNodes = totalNodes; distance = new int[totalNodes]; settld = new HashSet(); pQue = new PriorityQueue(totalNodes, new Node()); } public void dijkstra(List<list> adjacent, int s) { this.adjacent = adjacent; for (int j = 0; j <totalnodes; j++) { initializing the distance of every node to infinity (a large number) distance[j]="Integer.MAX_VALUE;" } adding source pque pque.add(new node(s, 0)); is always zero distance[s]="0;" while (settld.size() !="totalNodes)" terminating condition check when priority queue contains elements, return if (pque.isempty()) return; deleting that has minimum from int ux="pQue.remove().n;" whose confirmed (settld.contains(ux)) continue; we don't have call eneighbors(ux) already present in settled set. settld.add(ux); eneighbours(ux); private void eneighbours(int ux) edgedist="-1;" newdist="-1;" all neighbors vx for (int j="0;" < adjacent.get(ux).size(); current hasn't been processed (!settld.contains(vx.n)) + edgedist; new lesser cost (newdist distance[vx.n]) distance[vx.n]="newDist;" node(vx.n, distance[vx.n])); main method public static main(string argvs[]) totalnodes="9;" s="0;" representation connected edges using adjacency list by declaration class object declaring and type list<list> adjacent = new ArrayList<list>(); // Initialize list for every node for (int i = 0; i <totalnodes; 0 1 2 3 i++) { list itm="new" arraylist(); adjacent.add(itm); } adding the edges statement adjacent.get(0).add(new node(1, 3)); means to travel from node 1, one has cover units of distance it does not mean 0, we have add adjacent.get(1).add(new node(0, note that is same i.e., in both cases. similarly, added other too. node(7, 7)); node(2, 10)); node(8, 4)); adjacent.get(2).add(new node(3, 6)); node(5, 2)); 1)); adjacent.get(3).add(new node(4, 8)); 13)); adjacent.get(4).add(new 9)); adjacent.get(5).add(new node(6, 5)); adjacent.get(6).add(new adjacent.get(7).add(new adjacent.get(8).add(new creating an object class dijkstraexample1 obj="new" dijkstraexample1(totalnodes); obj.dijkstra(adjacent, s); printing shortest path all nodes source system.out.println('the :'); for (int j="0;" < obj.distance.length; j++) system.out.println(s + ' obj.distance[j]); implementing comparator interface this represents a graph implements member variables public int n; price; constructors constructor node() node(int n, price) this.n="n;" this.price="price;" @override compare(node n1, n2) if (n1.price n2.price) return 1; 0; pre> <p> <strong>Output:</strong> </p> <pre> The shortest path from the node: 0 to 0 is 0 0 to 1 is 3 0 to 2 is 8 0 to 3 is 10 0 to 4 is 18 0 to 5 is 10 0 to 6 is 9 0 to 7 is 7 0 to 8 is 7 </pre> <p>The time complexity of the above implementation is O(V + E*log(V)), where V is the total number of vertices, and E is the number of Edges present in the graph.</p> <h2>Limitations of Dijkstra Algorithm</h2> <p>The following are some limitations of the Dijkstra Algorithm:</p> <ol class="points"> <li>The Dijkstra algorithm does not work when an edge has negative values.</li> <li>For cyclic graphs, the algorithm does not evaluate the shortest path. Hence, for the cyclic graphs, it is not recommended to use the Dijkstra Algorithm.</li> </ol> <h2>Usages of Dijkstra Algorithm</h2> <p>A few prominent usages of the Dijkstra algorithm are:</p> <ol class="points"> <li>The algorithm is used by Google maps.</li> <li>The algorithm is used to find the distance between two locations.</li> <li>In IP routing also, this algorithm is used to discover the shortest path.</li> </ol> <hr></totalnodes;></list></totalnodes;></list></list></pre></totalvertex;></pre></distance[ux]:>

Iepriekš minētā koda laika sarežģītība ir O(V2), kur V ir kopējais grafā esošo virsotņu skaits. Šāda laika sarežģītība īpaši netraucē, ja grafiks ir mazāks, bet ļoti traucē, ja grafiks ir lielāks. Tāpēc mums ir jāveic optimizācija, lai samazinātu šo sarežģītību. Ar prioritārās rindas palīdzību mēs varam samazināt laika sarežģītību. Ievērojiet šādu kodu, kas ir rakstīts iepriekš attēlotajam grafikam.

string.valueof java

Faila nosaukums: DijkstraPiemērs1.java

 // Java Program shows the implementation Dijkstra&apos;s Algorithm // Using the Priority Queue // import statement import java.util.*; // Main class DijkstraExample1 public class DijkstraExample1 { // Member variables of the class private int distance[]; private Set settld; private PriorityQueue pQue; // Total count of the vertices private int totalNodes; List<list> adjacent; // Constructor of the class public DijkstraExample1(int totalNodes) { this.totalNodes = totalNodes; distance = new int[totalNodes]; settld = new HashSet(); pQue = new PriorityQueue(totalNodes, new Node()); } public void dijkstra(List<list> adjacent, int s) { this.adjacent = adjacent; for (int j = 0; j <totalnodes; j++) { initializing the distance of every node to infinity (a large number) distance[j]="Integer.MAX_VALUE;" } adding source pque pque.add(new node(s, 0)); is always zero distance[s]="0;" while (settld.size() !="totalNodes)" terminating condition check when priority queue contains elements, return if (pque.isempty()) return; deleting that has minimum from int ux="pQue.remove().n;" whose confirmed (settld.contains(ux)) continue; we don\'t have call eneighbors(ux) already present in settled set. settld.add(ux); eneighbours(ux); private void eneighbours(int ux) edgedist="-1;" newdist="-1;" all neighbors vx for (int j="0;" < adjacent.get(ux).size(); current hasn\'t been processed (!settld.contains(vx.n)) + edgedist; new lesser cost (newdist distance[vx.n]) distance[vx.n]="newDist;" node(vx.n, distance[vx.n])); main method public static main(string argvs[]) totalnodes="9;" s="0;" representation connected edges using adjacency list by declaration class object declaring and type list<list> adjacent = new ArrayList<list>(); // Initialize list for every node for (int i = 0; i <totalnodes; 0 1 2 3 i++) { list itm="new" arraylist(); adjacent.add(itm); } adding the edges statement adjacent.get(0).add(new node(1, 3)); means to travel from node 1, one has cover units of distance it does not mean 0, we have add adjacent.get(1).add(new node(0, note that is same i.e., in both cases. similarly, added other too. node(7, 7)); node(2, 10)); node(8, 4)); adjacent.get(2).add(new node(3, 6)); node(5, 2)); 1)); adjacent.get(3).add(new node(4, 8)); 13)); adjacent.get(4).add(new 9)); adjacent.get(5).add(new node(6, 5)); adjacent.get(6).add(new adjacent.get(7).add(new adjacent.get(8).add(new creating an object class dijkstraexample1 obj="new" dijkstraexample1(totalnodes); obj.dijkstra(adjacent, s); printing shortest path all nodes source system.out.println(\'the :\'); for (int j="0;" < obj.distance.length; j++) system.out.println(s + \' obj.distance[j]); implementing comparator interface this represents a graph implements member variables public int n; price; constructors constructor node() node(int n, price) this.n="n;" this.price="price;" @override compare(node n1, n2) if (n1.price n2.price) return 1; 0; pre> <p> <strong>Output:</strong> </p> <pre> The shortest path from the node: 0 to 0 is 0 0 to 1 is 3 0 to 2 is 8 0 to 3 is 10 0 to 4 is 18 0 to 5 is 10 0 to 6 is 9 0 to 7 is 7 0 to 8 is 7 </pre> <p>The time complexity of the above implementation is O(V + E*log(V)), where V is the total number of vertices, and E is the number of Edges present in the graph.</p> <h2>Limitations of Dijkstra Algorithm</h2> <p>The following are some limitations of the Dijkstra Algorithm:</p> <ol class="points"> <li>The Dijkstra algorithm does not work when an edge has negative values.</li> <li>For cyclic graphs, the algorithm does not evaluate the shortest path. Hence, for the cyclic graphs, it is not recommended to use the Dijkstra Algorithm.</li> </ol> <h2>Usages of Dijkstra Algorithm</h2> <p>A few prominent usages of the Dijkstra algorithm are:</p> <ol class="points"> <li>The algorithm is used by Google maps.</li> <li>The algorithm is used to find the distance between two locations.</li> <li>In IP routing also, this algorithm is used to discover the shortest path.</li> </ol> <hr></totalnodes;></list></totalnodes;></list></list>

Iepriekš minētās realizācijas laika sarežģītība ir O(V + E*log(V)), kur V ir kopējais virsotņu skaits un E ir grafikā esošo malu skaits.

Dijkstra algoritma ierobežojumi

Tālāk ir norādīti daži Dijkstra algoritma ierobežojumi.

  1. Dijkstra algoritms nedarbojas, ja malai ir negatīvas vērtības.
  2. Cikliskiem grafikiem algoritms nenovērtē īsāko ceļu. Tāpēc cikliskajiem grafikiem nav ieteicams izmantot Dijkstra algoritmu.

Dijkstra algoritma lietojumi

Dažas ievērojamas Dijkstra algoritma izmantošanas iespējas ir:

  1. Algoritmu izmanto Google Maps.
  2. Algoritms tiek izmantots, lai noteiktu attālumu starp divām vietām.
  3. Arī IP maršrutēšanā šis algoritms tiek izmantots, lai atklātu īsāko ceļu.