Dots skaitlis "n" un n skaitļi kārtojiet skaitļus, izmantojot Vienlaicīgi Sapludināt Kārtot. (Padoms: mēģiniet izmantot shmget shmat sistēmas zvanus).
1. daļa: algoritms (KĀ?)
Rekursīvi izveidojiet divus pakārtotos procesus kreisajai pusei vienu no labās puses. Ja elementu skaits masīvā procesam ir mazāks par 5, veiciet a Ievietošanas kārtošana . Pēc tam abu bērnu vecāks apvieno rezultātu un atgriežas pie vecāka un tā tālāk. Bet kā padarīt to vienlaicīgu?
2. daļa: Loģiskais (KĀPĒC?)
Šīs problēmas risinājuma svarīgākā daļa nav algoritmiska, bet gan operētājsistēmas un kodola jēdzienu izskaidrošana.
Lai panāktu vienlaicīgu kārtošanu, mums ir nepieciešams veids, kā likt diviem procesiem strādāt vienā un tajā pašā masīvā vienlaikus. Lai padarītu lietas vieglāku, Linux nodrošina daudz sistēmas zvanu, izmantojot vienkāršus API galapunktus. Divi no tiem ir shmget () (koplietotās atmiņas piešķiršanai) un shmat() (koplietojamās atmiņas darbībām). Mēs izveidojam kopīgu atmiņas telpu starp bērnu procesu, kuru mēs dakšām. Katrs segments ir sadalīts kreisajā un labajā bērnā, kas ir sakārtots tā, lai interesantā daļa būtu saistīta ar to, ka viņi strādā vienlaikus! shmget () pieprasa kodolam piešķirt a koplietota lapa abiem procesiem.
Kāpēc tradicionālā dakša () nedarbojas?
Atbilde slēpjas tajā, ko fork() patiesībā dara. No dokumentācijas "fork() izveido jaunu procesu, dublējot izsaukšanas procesu". Bērna process un vecāku process darbojas atsevišķās atmiņas vietās. Fork () laikā abām atmiņas vietām ir vienāds saturs. Atmiņa ieraksta faila deskriptora (fd) izmaiņas utt., ko veic viens no procesiem, neietekmē otru. Tāpēc mums ir nepieciešams koplietošanas atmiņas segments.
#include #include #include #include #include #include #include #include void insertionSort(int arr[] int n); void merge(int a[] int l1 int h1 int h2); void mergeSort(int a[] int l int h) { int i len = (h - l + 1); // Using insertion sort for small sized array if (len <= 5) { insertionSort(a + l len); return; } pid_t lpid rpid; lpid = fork(); if (lpid < 0) { // Lchild proc not created perror('Left Child Proc. not createdn'); _exit(-1); } else if (lpid == 0) { mergeSort(a l l + len / 2 - 1); _exit(0); } else { rpid = fork(); if (rpid < 0) { // Rchild proc not created perror('Right Child Proc. not createdn'); _exit(-1); } else if (rpid == 0) { mergeSort(a l + len / 2 h); _exit(0); } } int status; // Wait for child processes to finish waitpid(lpid &status 0); waitpid(rpid &status 0); // Merge the sorted subarrays merge(a l l + len / 2 - 1 h); } /* Function to sort an array using insertion sort*/ void insertionSort(int arr[] int n) { int i key j; for (i = 1; i < n; i++) { key = arr[i]; j = i - 1; /* Move elements of arr[0..i-1] that are greater than key to one position ahead of their current position */ while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } // Method to merge sorted subarrays void merge(int a[] int l1 int h1 int h2) { // We can directly copy the sorted elements // in the final array no need for a temporary // sorted array. int count = h2 - l1 + 1; int sorted[count]; int i = l1 k = h1 + 1 m = 0; while (i <= h1 && k <= h2) { if (a[i] < a[k]) sorted[m++] = a[i++]; else if (a[k] < a[i]) sorted[m++] = a[k++]; else if (a[i] == a[k]) { sorted[m++] = a[i++]; sorted[m++] = a[k++]; } } while (i <= h1) sorted[m++] = a[i++]; while (k <= h2) sorted[m++] = a[k++]; int arr_count = l1; for (i = 0; i < count; i++ l1++) a[l1] = sorted[i]; } // To check if array is actually sorted or not void isSorted(int arr[] int len) { if (len == 1) { std::cout << 'Sorting Done Successfully' << std::endl; return; } int i; for (i = 1; i < len; i++) { if (arr[i] < arr[i - 1]) { std::cout << 'Sorting Not Done' << std::endl; return; } } std::cout << 'Sorting Done Successfully' << std::endl; return; } // To fill random values in array for testing // purpose void fillData(int a[] int len) { // Create random arrays int i; for (i = 0; i < len; i++) a[i] = rand(); return; } // Driver code int main() { int shmid; key_t key = IPC_PRIVATE; int *shm_array; int length = 128; // Calculate segment length size_t SHM_SIZE = sizeof(int) * length; // Create the segment. if ((shmid = shmget(key SHM_SIZE IPC_CREAT | 0666)) < 0) { perror('shmget'); _exit(1); } // Now we attach the segment to our data space. if ((shm_array = (int *)shmat(shmid NULL 0)) == (int *)-1) { perror('shmat'); _exit(1); } // Create a random array of given length srand(time(NULL)); fillData(shm_array length); // Sort the created array mergeSort(shm_array 0 length - 1); // Check if array is sorted or not isSorted(shm_array length); /* Detach from the shared memory now that we are done using it. */ if (shmdt(shm_array) == -1) { perror('shmdt'); _exit(1); } /* Delete the shared memory segment. */ if (shmctl(shmid IPC_RMID NULL) == -1) { perror('shmctl'); _exit(1); } return 0; }
Java import java.util.Arrays; import java.util.Random; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveAction; public class ConcurrentMergeSort { // Method to merge sorted subarrays private static void merge(int[] a int low int mid int high) { int[] temp = new int[high - low + 1]; int i = low j = mid + 1 k = 0; while (i <= mid && j <= high) { if (a[i] <= a[j]) { temp[k++] = a[i++]; } else { temp[k++] = a[j++]; } } while (i <= mid) { temp[k++] = a[i++]; } while (j <= high) { temp[k++] = a[j++]; } System.arraycopy(temp 0 a low temp.length); } // RecursiveAction for fork/join framework static class SortTask extends RecursiveAction { private final int[] a; private final int low high; SortTask(int[] a int low int high) { this.a = a; this.low = low; this.high = high; } @Override protected void compute() { if (high - low <= 5) { Arrays.sort(a low high + 1); } else { int mid = low + (high - low) / 2; invokeAll(new SortTask(a low mid) new SortTask(a mid + 1 high)); merge(a low mid high); } } } // Method to check if array is sorted private static boolean isSorted(int[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } // Method to fill array with random numbers private static void fillData(int[] a) { Random rand = new Random(); for (int i = 0; i < a.length; i++) { a[i] = rand.nextInt(); } } public static void main(String[] args) { int length = 128; int[] a = new int[length]; fillData(a); ForkJoinPool pool = new ForkJoinPool(); pool.invoke(new SortTask(a 0 a.length - 1)); if (isSorted(a)) { System.out.println('Sorting Done Successfully'); } else { System.out.println('Sorting Not Done'); } } }
Python3 import numpy as np import multiprocessing as mp import time def insertion_sort(arr): n = len(arr) for i in range(1 n): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key def merge(arr l mid r): n1 = mid - l + 1 n2 = r - mid L = arr[l:l + n1].copy() R = arr[mid + 1:mid + 1 + n2].copy() i = j = 0 k = l while i < n1 and j < n2: if L[i] <= R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 while i < n1: arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[j] j += 1 k += 1 def merge_sort(arr l r): if l < r: if r - l + 1 <= 5: insertion_sort(arr) else: mid = (l + r) // 2 p1 = mp.Process(target=merge_sort args=(arr l mid)) p2 = mp.Process(target=merge_sort args=(arr mid + 1 r)) p1.start() p2.start() p1.join() p2.join() merge(arr l mid r) def is_sorted(arr): for i in range(1 len(arr)): if arr[i] < arr[i - 1]: return False return True def fill_data(arr): np.random.seed(0) arr[:] = np.random.randint(0 1000 size=len(arr)) if __name__ == '__main__': length = 128 shm_array = mp.Array('i' length) fill_data(shm_array) start_time = time.time() merge_sort(shm_array 0 length - 1) end_time = time.time() if is_sorted(shm_array): print('Sorting Done Successfully') else: print('Sorting Not Done') print('Time taken:' end_time - start_time)
JavaScript // Importing required modules const { Worker isMainThread parentPort workerData } = require('worker_threads'); // Function to merge sorted subarrays function merge(a low mid high) { let temp = new Array(high - low + 1); let i = low j = mid + 1 k = 0; while (i <= mid && j <= high) { if (a[i] <= a[j]) { temp[k++] = a[i++]; } else { temp[k++] = a[j++]; } } while (i <= mid) { temp[k++] = a[i++]; } while (j <= high) { temp[k++] = a[j++]; } for (let p = 0; p < temp.length; p++) { a[low + p] = temp[p]; } } // Function to check if array is sorted function isSorted(a) { for (let i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } // Function to fill array with random numbers function fillData(a) { for (let i = 0; i < a.length; i++) { a[i] = Math.floor(Math.random() * 1000); } } // Function to sort the array using merge sort function sortArray(a low high) { if (high - low <= 5) { a.sort((a b) => a - b); } else { let mid = low + Math.floor((high - low) / 2); sortArray(a low mid); sortArray(a mid + 1 high); merge(a low mid high); } } // Main function function main() { let length = 128; let a = new Array(length); fillData(a); sortArray(a 0 a.length - 1); if (isSorted(a)) { console.log('Sorting Done Successfully'); } else { console.log('Sorting Not Done'); } } main();
Izvade:
Sorting Done Successfully
Laika sarežģītība: O(N log N)
Palīgtelpa: O(N)
Veiktspējas uzlabojumi?
Mēģiniet iestatīt kodu un salīdziniet tā veiktspēju ar tradicionālo secīgo kodu. Jūs būtu pārsteigts, uzzinot, ka secīgās kārtošanas veiktspēja ir labāka!
Kad kreisais bērns piekļūst kreisajam masīvam, masīvs tiek ielādēts procesora kešatmiņā. Tagad, kad tiek piekļūts pareizajam masīvam (vienlaicīgas piekļuves dēļ), kešatmiņa tiek izlaista, jo kešatmiņa ir piepildīta ar kreiso segmentu un pēc tam labais segments tiek kopēts kešatmiņā. Šis process turpinās, un tas pasliktina veiktspēju līdz tādam līmenim, ka tas darbojas sliktāk nekā secīgais kods.
Ir veidi, kā samazināt kešatmiņas trūkumu, kontrolējot koda darbplūsmu. Bet no tiem nevar pilnībā izvairīties!